Development of Gene-derived SNP Markers and Their Application for the Assessment of Genetic Diversity in Wild and Cultured Populations in Sea Cucumber, *Apostichopus japonicus*

YU DONG, QI LI¹, XIAOXIAO ZHONG, AND LINGFENG KONG

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China

Abstract

The *Apostichopus japonicus* is a valuable aquaculture species in China. In this study, 51 single nucleotide polymorphisms (SNPs) were identified from expressed sequence tags of sea cucumber using high-resolution melting. The average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.2462 and 0.2897, respectively. Thirty-two of these loci were used for estimating the genetic similarity and variation between the five hatchery stocks from China and two wild stocks from Japan. No significant differences in Ho or He were observed between the wild and hatchery populations. The pairwise Fst (which ranged from 0.0119 to 0.0236) and the genetic identity (which varied from 0.9802 to 0.9915) showed no significant differentiation between the wild and cultured stocks. The analysis of molecular variance indicated the source of variation was at the level of "within the populations." The information on the genetic variation and differentiation in cultured and wild populations of *A. japonicus* obtained in this study is useful for setting up suitable guidelines for founding and maintaining of cultured stocks and for future genetic improvement by selective breeding.

The sea cucumber, Apostichopus (Stichopus) japonicus (Selenka), is a common benthic detritus feeder of coastal sea habitats in China, Japan, Korea, and far eastern Russia. A. japonicus is an important economic species in China due to its high market value. The increasing market demand and overexploitation of wild sea cucumbers stimulated the aquaculture of A. japonicus along the coasts of China in the past decades (Du et al. 2012). In 2012, the production of sea cucumber was 170,830 metric tons in China (BOF 2013). However, the rapid development of sea cucumber aquaculture was accompanied by a serious problem that the diversity of A. japonicus may decline to some degree after nearly 30 yr of domestication. In hatchery stocks, sea cucumber breeding could persist for many generations by using the limited number of parents because of high fecundity of mature female sea cucumbers and the technique of artificial fertilization. However, their offerings may demonstrate a reduction in genetic variability compared with their wild progenitors. Moreover, the massive releases of hatchery sea cucumbers in the stock enhancement industry have raised concerns about the genetic effects on the wild populations. This may lead to reduction in the genetic diversity of released population and genetic variabilities of wild populations may be eroded by the transplantation of nonnative sea cucumbers (Taniguchi 2004). The reduction in genetic diversity may result in reduction of a population's ability to adapt to environments (An et al. 2011a). Therefore, it is important to investigate the genetic diversity and genetic populations of sea cucumbers.

Molecular markers are widely used as an exceptional indicator of genetic variation within and between populations. As a prominent molecular marker, single nucleotide polymorphism (SNP) has been used in some marine species (Karlsson et al. 2011; Kong et al. 2014) owing to its abundance, low genotyping cost, typically biallelic, codominant and high-throughput genotyping (Bester et al. 2008; Hubert et al. 2009;

¹Correspondence to: qili66@mail.ouc.edu.cn

McGlauflin et al. 2010; Clemento et al. 2011). They also have advantages of lower mutation rate and genotyping error rates which are important in many applications (Abadía-Cardoso et al. 2011). SNPs are regarded as an ideal tool for construction of high-dense maps, quantitative trait loci, assessment of genetic diversity, parentage studies, and marker-assisted breeding (Zhu et al. 2003; Hubert et al. 2009). In aquaculture animals, SNP identification and application were documented in some species including the Pacific oyster (Bai et al. 2009; Zhong et al. 2013; Jin et al. 2014), Atlantic cod (Hubert et al. 2009), black tiger shrimp (Sellars et al. 2012; Henshall et al. 2014), Pacific abalone (Qi et al. 2008), and common carp (Kongchum et al. 2010). In A. japonicas, the number of SNPs from the expressed sequence tag (EST) database (Sun et al. 2010; Yang et al. 2012) are limited compared with the SNPs from the transcriptome (Du et al. 2012; Gao et al. 2013; Zhou et al. 2014). Gene-derived SNPs have more advantages because they can result in a change in the amino acid sequence of encoded protein, which may affect protein function, namely nonsynonymous SNPs (Kim et al. 2003).

In this study, we developed SNP markers from the EST database of *A. japonicas* by high-resolution melting (HRM) method, and compared the genetic diversity between five cultured populations of *A. japonicas* from China and two wild populations from Japan using the SNP markers.

Materials and Methods

Experimental Populations and DNA Extraction

To screen for polymorphic SNPs, 30 hatchery individuals of *A. japonicas* were collected from Yantai, Shandong Province, China. Two wild and five cultured *A. japonicas* populations were collected for genetic diversity analysis. Two wild samples were collected from Saiki Bay (Oita) (abbreviation: WSB, 46 individuals) and Mutsu Bay (Aomori) (WMB, 50 individuals), Japan. Five cultured samples were collected from Shandong Province, the northern coast of China: Changdao (HCD, 37 individuals), Jiaonan (HJN, 59 individuals), Yantai (HYT, 59 individuals), Wendeng (HWD, 60 individuals), and Penglai (HPL, 60 individuals) (Fig. 1). No details of the founding and maintenance of the cultured populations are available; however, the parents of the sea cucumber were sampled from cultured populations. Genomic DNA was extracted from skin tissue using a cetyltrimethyl ammonium bromide procedure (Li et al. 2009). After extraction, all the DNA samples were preserved in TE buffer, then quantified and diluted to 10 ng/µL for polymerase chain reaction (PCR).

SNP Discovery in the EST Database

A total of 7739 EST sequences of A. japonicas were downloaded from GenBank EST database (The National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/, March 14, 2013) and assembled into contigs using the SeqMan Pro sequence assembly software (DNASTAR Inc., Madison, WI, USA). A single-base mutation that occurred in four or more ESTs and surrounded by good flanking sequences was identified as a potential SNP for validation analysis. Sequences containing SNPs were annotated using BLASTx software (U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA), and sequence homology was accepted based on a cutoff E value of 1.0×10^{-6} . The informative strand and reading frame were identified by using the sequence with highest homology. The open reading frame finder (ORF Finder) was used to determine whether SNPs were synonymous, nonsynonymous, or from untranslated regions (UTRs).

SNP Genotyping and Polymorphism Evaluation

Primers were designed to have a product size of 50-250 bp and an annealing temperature at 60 ± 2 C with few exceptions, using the Primer Premier 5.0 program (PREMIER Biosoft International, USA) and Oligo 7.0 software (http://www.oligo.net/downloads.html). The polymorphic SNPs were genotyped using HRM technology. PCR was performed in a total volume of $10 \,\mu$ L on a LightCycler[®] 480 real-time PCR instrument according to Zhong et al. (2013). Data were analyzed using the LightCycler 480 Gene Scanning Software 1.5

FIGURE 1. The geographic distributions of Apostichopus japonicus samples used in this study. Two wild populations (WMB, Mutsu Bay [Aomori]; WSB, Saiki Bay [Oita], both in Japan) and five cultured populations (HCD, Changdao; HYT, Yantai; HWD, Wendeng; HPL, Penglai; HJN, Jiaonan, all in Shandong province, China) were used.

(Roche Diagnostics). For each SNP locus, the minor allele frequency, expected heterozygosity (*H*e), observed heterozygosity (*H*o), deviations from Hardy–Weinberg equilibrium (HWE), and linkage disequilibrium (LD) were calculated using PopGen 32 software (http://cc.oulu.fi/~jaspi/popgen/popdown.htm).

Genetic Diversity of Wild and Hatchery Populations

Genetic diversity of wild and hatchery populations was assessed using the developed SNP loci. For each population and locus, *He*, and *Ho*, deviations from HWE were determined by PopGen 32 software. The polymorphic information content (PIC) was calculated by the method according to Botstein (1980):

PIC =
$$\sum_{i=0}^{n} P_i^2 - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2P_i^2 P_j^2$$

In the formula, the P_i and P_j represent allele frequency of *i*th and *j*th in the population, respectively, and the *n* represents the number of alleles. Fixation index (*F*is) was also calculated using PopGen 32 software to evaluate the extent of differences within and among populations.

To estimate the genetic differentiation between the wild and hatchery populations, two parameters were measured: genetic identity (I), which estimates the proportion of genes that are identical in two populations, and genetic distance (D), which estimates the proportion of gene changes that have occurred in the separate evolution of two populations (Rafferty 2010). Pairwise genetic distances and genetic identity between populations were estimated according to Nei (1978) using PopGen 32 software. The Fst reflects the genetic relationships of different populations. The population kinship relationship has a negative correlation with the value of Fst, so pairwise Fst were calculated with the Weir and Cockerham (1984) method using the GenAlex 6.501 software (Peakall and Smouse 2012). The hierarchical genetic variation existing between wild and hatchery populations and within populations was analyzed by analysis of molecular variance (AMOVA) using GenAlex 6.501 software (Meirmans 2012).

Results

Marker Information

The alignment of the 7739 ESTs downloaded from GenBank produced 1878 contigs. According to the frequency of mutation and conservation of flanking sequences, 229 putative SNPs were selected for validation. Of the 229 primer pairs, 140 primers could produce reliable amplification, and the other 89 failed to amplify. Among the 140 candidate SNPs, 51 (36.43%) were polymorphic and considered as validated in the 30 cultured sea cucumbers. The characteristics of 51 SNPs are summarized in Table 1. Of these SNPs, four EST-SNPs (SNP59, SNP109, SNP138, and SNP148) were the same as the SNPs developed before (Sun et al. 2010; Yang et al. 2012), the other 47 EST-SNPs were newly developed. The minor allele frequency ranged from 0.0333 to 0.4000, with an average of 0.1563. The Ho and He ranged from 0.0345 to 0.5000 and from 0.0345 to 0.5643, with averages of 0.2405 and 0.3055, respectively. The number of significant LD is 12 (P < 0.05). The deviation from HWE was observed at eight loci. Of the 51 SNPs, 38 (74.5%) could not be annotated, 28 (54.9%) were located in the coding region, and 23 (45.1%) in the UTR (Table 1). Twenty-two of the 28 SNPs located within the coding region were synonymous, and 6 nonsynonymous.

Population Genetic Variability

A total of 32 EST-SNP loci were selected for the population analysis. All 32 SNP loci were found to be polymorphic in both wild and hatchery populations. The Ho, He, probability of significant deviations from HWE, index Fis, and the PIC are presented in Table 2. The mean Ho of the 32 loci was the highest in the wild WMB stocks (0.2760), followed by the hatchery HCD (0.2759) and WSB (0.2664) populations. The hatchery HCD (0.3354) was the highest in the average He, followed by the WSB (0.3280), HYT (0.3256), WMB (0.3188), HWD (0.3147), HPL (0.3011), and HJN (0.2689). Significant departures from HWE were observed in 90 of the 224 singlelocus (Table 2). Inbreeding coefficients (Fis) varied from -0.2632 to 0.6580 in the hatchery stocks and from -0.2500 to 0.6617in the wild stocks. Moderate polymorphisms were found from the PIC values of all the loci. The average PIC value (0.2687) of the hatchery HCD was higher than that of other stocks,

followed by the wild WSB (0.2642) and the hatchery HYT (0.2620).

Population Genetic Differentiation

Genetic identity (I) and genetic distance (D)between the wild and hatchery populations are presented in Table 3. The high genetic identity (I) (from 0.9802 to 0.9915) demonstrates that both the wild and hatchery populations have a high proportion of identical genes structure. The pairwise Fst values between the hatchery stocks and wild populations showed no significant differences in all but three comparisons (HJN and WMB, HJN and WSB, HPL and WSB), suggesting no genetic differentiation between the hatchery and wild stocks (Table 4). Significant genetic differentiation was detected in 8 of 10 comparisons in the five hatchery stocks, but not between the two wild populations. In the AMOVA, 99% of variations were found within populations, and only 1% among populations (Table 5).

Discussion

Marker Information

Gene-derived SNPs are more valuable than the genome SNPs because they are directly located in coding sequences and related to gene functions. The functions may be correlated with sea cucumber aquaculture and could be used to establish families which have particular economic traits by marker-assisted selection (Aguilar-Espinoza et al. 2014). The 51 EST-SNP loci showed polymorphic in the population and were beneficial for genetic diversity assessment, genome mapping, reproductive ecology analysis, and other SNP-based analysis in aquaculture practices for A. japonicus. Less than half of SNP loci can be annotated probably because several putative ORFs were found for some amplicons and only the most feasible one was chosen. The deviations from HWE were observed at eight loci with heterozygote deficiencies, which may be due to the null alleles or Wahlund effect.

А variety of methods such as tetra-primer amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and melting temperature

SNP	Accession			Amplicon	SNP type						
name	no.	Primer sequences $(5'-3')$	Ta~(C)	length (bp)	and location	Annotation	Type	Не	H_0	MAF	P value
SNP4	GH986253	F: GAACCTGAAGGAGGATTAAGACC R: GAAGTAGTCCGACCGTTCCAC	60	63	A/G 776	Ferritin	UTR	0.3539	0.3103	0.2241	0.5072
SNP8	GH253714	F: GCTAATTTGACAGGTATCACACACC R: CAACACTTTAGTGGTGGCGGC	60	86	A/G 851	Unknown	UTR	0.1887	0.1379	0.1034	0.1979
SNP20	GH253420	F: ACTCACTGTGCTGGAACTGTCG	60	67	A/G 586	Proprotein convertase subtilisin/kexin type 9	N (Asn/Ser)	0.3727	0.2759	0.2414	0.1686
SNP26	G0253762	R: CGCCGTAAAGGCTGACTGATT F: GTCTTAACCAGACCTCTTTCCTATT	60	114	A/G 723	Cytochrome c oxidase subunit II	S (Gly)	0.3254	0.1333	0.2000	0.0024^{*}
SNP27	GH986068	R: ATGGGACTGATTCTATAACTATCGG F: GGTAACCAAAGGGTGTAGCAGC R: ACCTGACTTACGTCGGGTCTGAAC	09	91	A/G 412	Unknown	UTR	0.0345	0.0345	0.0172	1.0000
SNP33	GH986384	F: GACTGCTCGTAAATCAACTGGTGG R: CACTCTTTCTGGCTGCCTTGG	62	71	T/G 287	Unknown	S (Ala)	0.0345	0.3103	0.1897	0.9655
SNP48	G0254052	F: ACAACTTTTTTTTTGACCCAGCAG	09	121	C/T 438	Cytochrome oxidase subunit 1	UTR	0.1948	0.1429	0.1071	0.2066
SNID50	60753373	R: GTGAGAGATCATACCAAATCCAGG E: GCAACCGTGGAGAAAAAGAAT	60	07	0/C 380	TInternation	I TTR	0 1766	0,0667	0.0667	0.0501
	C7CCC700	R: AACTTTTTCCGTTTACCAGAGTAAC	8	10			VID	0071.0	1000.0	1000.0	10000
SNP62	GH985579	F: GGGGAGTCACAAGTATGTATCAGAG R: TGTAGTGCCATGTACGGATTCTC	60	89	A/G 258	Unknown	S (Arg)	0.4217	0.3793	0.0667	0.5842
SNP68	GR706505	F: TATCTGCCATTTTGTTTACCTCTCT	60	126	A/G 642	NADH dehydrogenase subunit 5	S (Gly)	0.3045	0.3667	0.0667	0.1323
		R: TTGACCTGTGTAGTAAGGCTGATAC									
SNP84	GO270701	F: GGAAGCGTGCTCTTATTAGGAAC R: GATAGAGCAGACTTTTGAAGGGAG	60	132	A/G 106	Unknown	S (Leu)	0.1307	0.069	0.069	0.0523
SNP88	GO495976	F: CCCATATTGACGAGAAGGATTGC B: CACCTCAACTTAACTTCACTCTCAAAC	62	134	C/T 441	Unknown	UTR	0.0655	0.0667	0.0333	0.8527
SNP92	GR706116	F: GAAGAAGTGACCAAGAAGAGGACC	09	110	A/G 422	Unknown	S (Leu)	0.4401	0.3667	0.3167	0.3568
SNP102	GH985669	R: CTGACCTCTGGCTTCTGATTCTT F: AGTGGACACCAGATTGAACAACAT R: GAACACTCGATGCTTTAGCC	09	53	C/T 369	Unknown	S (Ile)	0.1554	0.1000	0.0833	0.1072

TABLE 1. Characteristics of the 51 sinele-nucleotide polymorphisms (SNPs) for Apostichopus iaponicus derived from expressed sequences tass.

SNPS FOR SEA CUCUMBER

	P value	0.1900	0.0154*	0.0450*		0.2279		0.0167^{*}	0.0359^{*}		0.6433		0.0883		0.2103		0.2240	0 3747		0.7801		0.9314		0.8527
	MAF	0.1000	0.1167	0.2000		0.3000		0.1207	0.3833		0.0667		0.2069		0.2833		0.1552	0 2667	002:0	0.2833		0.3167		0.0333
	H_0	0.1333	0.1000	0.2000		0.3333		0.1034	0.3000		0.1333		0.4138		0.5000		0.3103	0 3333		0.4333		0.4333		0.0667
	Нe	0.1831	0.2096	0.3254		0.4271		0.2160	0.4808		0.1266		0.3339		0.4130		0.2668	0 3077		0.4130		0.4401		0.0655
	Type	UTR	UTR	UTR		UTR		UTR	UTR		S (Leu)		S (Ile)		S (Gly)		S (His)	ITR		S (Thr)		UTR		N (Gly/Ser)
	Annotation	Cytochrome c oxidase subunit I	Cytochrome c oxidase subunit I	NADH dehvdrogenase	subunit 1	Fibrinogen-like protein A		Unknown	Profilin		Unknown		Calmodulin 2		Unknown		Unknown	Uhknown		Unknown		Unknown		Complement factor
SNP type	and location	A/G 434	A/G 625	C/T 303		A/G 219		C/G 250	C/T 124		C/G 255		C/T 262		C/T 479		C/T 464	C/T 488		C/T 388		A/G 244		A/G 736
Amplicon	length (bp)	139	163	87		64		131	167		85		74		109		78	120		111		59		87
	Ta (C)	09	60	09		60		09	62		62		60		60		62	60	8	60		60		09
	Primer sequences $(5'-3')$	F: GGTGCTGTATTTGCTATATTTGCC	R: AGTGTTGTGGGGAAGAAGGTTAGG F: GATTACCCAGACGCTTATACAACAT	R: ATTGTCATTCCAGAGATGCGG F: GGAGCGAAAGGTTCTTGGGT	<u>Β. ΟΓΩΤΓΑΓΓΑ</u> ΔΑΑΤΓΩΤΤΩΤΑΓΤΑ ΑΤ	F: AACATCTTGGAAACAGGAAAGTCAC	R: CTGGTTTACTGTGGTTTGCTTCAT	F: TGGAGCAAAGGAAGTTGAGGTC	F: CTTTCAGTGTGTAAUILUIUUU	R: GCACAAATGAAGTGTTGACGATAAG	F: TGTGTTGGTGAGAGCGGTGAC	R: CTTTTGAGAAGACTGGTGTCTGTCC	F: AGGGTGACAACAAGGTCCAGG	R: AGCCTCTGTTGGGTTGAATCC	F: GGACGGCAAGTTCAACCAGAT	R: CCAATAATGACGAAGACCACGAT	F: GAGGATGTTAGAGGCAAGAACTGTC D: GACCATAGAGCAATACTTGTCCTG	F: TGAGGAGTTGA AGGAGCAGTAGT	R: ACCTCCATTCCCAGAAGGATACTC	F: AATCTGAACTTAGCAAACTCAAACG	R: CCTGGAGTTCTCGGCTGGTAT	F: GGTAACCAAAGGGTGTAGCAGC	R: GTAGGGAATTAACGGACGAACAG	F: CTTGCCAGGGTGACAGCG
Accession	no.	GR706656	GR706656	G0253832		GO496096		GH551772	GH550818		GH985773		GO269824		GR706115		GR706048	GH986450		GH985516		GR706693		GO253384
SNP	name	SNP105	SNP106	SNP109		SNP115		SNP121	SNP123		SNP126		SNP131		SNP136		SNP138	SNP141		SNP143		SNP146		SNP147

TABLE 1. continued

DONG ET AL.

continued	
Ξ.	
TABLE	

SNP name	Accession no.	Primer sequences $(5'-3')$	Ta (C)	Amplicon length (bp)	SNP type and location	Annotation	Type	He	$_{\rm Ho}$	MAF	P value
SNP148	DY625372	R: CATATCCCCAACTGGTGACTCC F: AGGTTCTTGTTTTGCTATCAITGTT	60	103	A/G 151	NADH dehydrogenase submit 5	S (Gly)	0.1831	0.1333	0.1000	0.1900
SNP149	GO253404	R: AGTTTACCCGTGTTCAGCCAT F: AATGTCATCAGAGTCAACTGGTCC	60	63	C/G 415	Unknown	S (Gly)	0.2825	0.2667	0.1667	0.7555
SNP153	GO270690	R: GTTAGATGTGGGGGGGCCCCATAGAG F: AACACTGGCTACAACAGAGGACC b: ctrca a accedence attrement	60	67	A/G 442	Unknown	S (Gln)	0.4271	0.3333	0.3000	0.2280
SNP154	GH551555	R. CLART AGC ACC A A A ATG R. CLACC A AGC ACAC A A A A A TG	62	118	C/G 721	Unknown	UTR	0.2904	0.2069	0.1724	0.1431
SNP155	GR706565	F: CGCAGATGAAACTGTTGAGCAT	62	126	C/T 742	Unknown	S (Ala)	0.2987	0.2143	0.1786	0.1547
SNP163	GH550645	R: IUACAAUAAUAUUUUIIIIUCAUAI F: GACCCTACCCTGGAGGTTGC D: ATCTCCCTCCTCCTCCTCCTCAAA	09	155	T/G 765	Unknown	S (Pro)	0.3045	0.3000	0.1833	0.9330
SNP164	GH551587	R: ALULCUUUUUUUUUAIUAAIUAUI F: CCATTTGCTCTTTTGAAGACTGTTT R: ATTGCTACAGTGCAAAAGAGGAG	09	124	A/C 68	Unknown	N (Gln/Pro)	0.4217	0.3103	0.2931	0.1553
SNP166	GO270325	F: GCCAAGGGAACCCAGGACT	62	119	A/C 289	Unknown	S (Thr)	0.4483	0.3793	0.3276	0.4024
SNP175	GH985470	F: GGAGGAGAGTTGACAAGGCAC	62	111	A/C 301	Unknown	S (Ile)	0.4401	0.2333	0.3167	0.0097*
SNP177	DY625159	F: TGAAGTTATTTGGCAAGTGGAGC R: CGGAAACGCTTGACTTGGT	60	113	A/G 188	Unknown	S (Ala)	0.3638	0.2000	0.2333	0.0171^{*}
SNP178	DY625289	F: CAGTGCCCAGCCGTAGAAC	60	72	C/T 153	Unknown	S (His)	0.3638	0.2000	0.2333	0.0171^{*}
SNP183	GH550884	R: CGGAGAAATGTCCTGATGTAAAC R: CCGGTGAATGTCCTGATGTAAAC R: CCAGTGAATGTGTCTGATCAAACG	62	111	C/T 334	Unknown	UTR	0.4870	0.3478	0.3913	0.1615
SNP185	GO253769	F: GAAGCAGGTTTACCCCGACTACT	62	141	A/G 447	Cytochrome c oxidase subunit II	UTR	0.2668	0.1724	0.1552	0.0797
SNP186	GR706604	R: CACGGCATCCATCTTTACTCCT F: CTTACTTGCTGATTTTGTGTGGTG R: TACGGTCTACAAGGAACATACACTG	60	56	A/G 607	Unknown	UTR	0.1831	0.2000	0.1000	0.4555

SNPS FOR SEA CUCUMBER

SNP	Accession			Amplicon	SNP type						
name	no.	Primer sequences $(5'-3')$	Ta (C)	length (bp)	and location	Annotation	Type	He	H_0	MAF	P value
SNP187	GR706604	F: ATGCTCTAGTTTCCTTCCATTACAC	60	157	A/G 854	Unknown	UTR	0.0727	0.2143	0.0370	0.8445
SNP189	GH986408	F: GCTCTCAGGGTCAGTGTACTCAAGT	62	64	A/T 263	Unknown	S (Ile)	0.1948	0.2759	0.1071	0.4380
SNP213	GH549884	R: AUGIGUAAUGUI I I GUUCU F: ACTGGTCAACTTCCAAAGCGTAT	60	68	C/T 241	Unknown	UTR	0.3339	0.2759	0.2069	0.3560
SNP216	GO269843	R: TCATCTCACAGTAGCCCTTGGTT F: AATGTGCTACTCATGGGGGGGGATT	09	104	A/G 427	Unknown	UTR	0.3339	0.2759	0.2069	0.3560
SNP217	GH985485	R: AGTCGGGGATCTCTCTCTCTTATT F: AACTGGATGTGGGTTACACGAGG	09	156	C/G 551	Unknown	UTR	0.2987	0.2857	0.1786	0.8138
SNP222	GH551382	R: CTTTGGGGAGGTCTGATGGTC F: CTGCTCTATTCTGTGCGTTTATGTCC	09	09	C/T 351	Unknown	UTR	0.3539	0.3103	0.2241	0.5072
SNP223	GH550323	R: ATTGGGAGTGCTTCAAGTCATAAC F: CAGGGATGGTGCTCTTTACGAT	60	92	T/G 175	Unknown	N (Ser/Ala)	0.3638	0.3333	0.2333	0.6430
SNP225	GH550784	R: ACTGCCACCAGCAATTCCAG F: GTCTTATGGTTGCTTTCCTTATCCT	09	140	A/G 565	Unknown	N (Gly/Arg)	0.4881	0.4667	0.4000	0.8064
SNP228	GH551832	R: AACACCGTTCTCTCTCGGTCAAAT F: GCTATCAGACGCCCCCTACTT	09	58	A/C 447	Unknown	N (Ala/Asp)	0.1266	0.0667	0.0667	0.0520
		R: GTAACGTCAGAGAAGGACAGTGGT					I				
He = e	xpected heter	ozygosity; Ho = observed heterozygosity; MAF	= minor	allele freque	ncy; $Ta = anne$	aling temperature; UTF	R = untranslated	region.			

*Significant deviation from Hardy–Weinberg equilibrium (P < 0.05).

TABLE 1. continued

			Ha	atchery populati	on		Wild pop	pulation
Locus		HJN	HYT	HWD	HPL	HCD	WMB	WSB
SNP4	Но	0.1034	0.2807	0.2333	0.3220	0.1622	0.3800	0.1522
	He	0.1295	0.4360	0.4235	0.4231	0.3732	0.3578	0.2759
	Р	0.1988	0.0075^{*}	0.0006^{*}	0.4952	0.0009^{*}	0.6477	0.0060^{*}
	Fis	0.1944	0.3504	0.4444	0.0812	0.5595	-0.0728	0.4424
	PIC	0.1202	0.3388	0.3318	0.3123	0.3004	0.2915	0.2356
SNP8	Ho	0.0877	0.1864	0.1167	0.2667	0.1351	0.1224	0.1739
	He	0.2306	0.2238	0.1948	0.3742	0.2566	0.1851	0.1959
	Р	0.0000^{*}	0.2337	0.0094*	0.3467	0.0105*	0.0451*	0.4698
	Fis	0.6162	0.1599	0.3961	0.1162	0.4661	0.3318	0.1024
	PIC	0.2024	0.1973	0.1745	0.2819	0.2210	0.1664	0.1750
SNP20	Но	0.3051	0.2931	0.4167	0.3333	0.2703	0.1800	0.3478
	He	0.3060	0.4250	0.4727	0.5036	0.3999	0.2285	0.4443
	Р	0.9823	0.0193*	0.3559	0.8072	0.0521	0.1686	0.1405
	Fis	-0.0057	0.3044	0.1111	0.0231	0.3148	0.2042	0.2086
	PIC	0.2573	0.3326	0.3589	0.3356	0.3167	0.2006	0.3429
SNP26	Но	0.0508	0.0517	0.1897	0.0847	0.3784	0.1800	0.3043
	He	0.1126	0.1144	0.2763	0.1705	0.3110	0.1655	0.3440
	Р	0.0034*	0.0035*	0.0281*	0.0022*	0.0801	0.3733	0.4390
	Fis	0.5444	0.5439	0.3077	0.4987	-0.2333	-0.0989	0.1056
	PIC	0.1053	0.1069	0.2364	0.1547	0.2597	0.1504	0.2824
SNP33	Но	0.4737	0.2881	0.4500	0.4667	0.1892	0.4600	0.4222
	He	0.3995	0.3739	0.4021	0.3782	0.3277	0.3788	0.3848
	Р	0.1347	0.0854	0.3369	0.0431*	0.0153*	0.0938	0.4944
	Fis	-0.1963	0.2228	-0.1285	-0.2444	0.4147	-0.2267	-0.1097
	PIC	0.3176	0.3020	0.3192	0.3047	0.2710	0.3047	0.3081
SNP48	Но	0.0508	0.0517	0.3966	0.0847	0.0811	0.1000	0.2667
	He	0.0500	0.0508	0.3207	0.1126	0.1277	0.1315	0.2337
	Р	0.8193	0.8177	0.0190*	0.1335	0.0834	0.1624	0.1923
	Fis	-0.0261	-0.0265	-0.2473	0.2407	0.3565	0.2320	-0.1538
	PIC	0.0483	0.0492	0.2674	0.1053	0.1181	0.1217	0.2044
SNP59	Ho	0.0169	0.1017	0.0500	0.0333	0.0270	0.0408	0.0217
	He	0.0500	0.0973	0.0492	0.0650	0.0270	0.0791	0.0217
	Р	0.0076*	0.6047	0.8208	0.0223*	1.0000	0.0282*	1.0000
	Fis	0.6580	-0.0536	-0.0256	0.4828	-0.0137	0.4787	-0.0110
	PIC	0.0483	0.0918	0.0476	0.0623	0.0263	0.0752	0.0213
SNP62	Но	0.4211	0.4746	0.3667	0.2167	0.3514	0.3400	0.2826
	He	0.3552	0.3987	0.4683	0.3864	0.3869	0.4709	0.4193
	Р	0.1212	0.1182	0.0914	0.0010*	0.5746	0.0479*	0.0287*
	Fis	-0.1958	-0.2006	0.2105	0.4346	0.0794	0.2707	0.3185
	PIC	0.2901	0.3172	0.3566	0.3098	0.3089	0.3575	0.3287
SNP88	Но	0.0339	0.0508	0.3500	0.0667	0.0811	0.3400	0.3913
	He	0.0336	0.0818	0.2912	0.0650	0.0789	0.3788	0.3679
	Р	0.8955	0.0481*	0.0386*	0.7477	0.7712	0.4706	0.6536
	Fis	-0.0172	0.3735	-0.2121	-0.0345	-0.0423	0.0933	-0.0753
	PIC	0.0327	0.0779	0.2471	0.0623	0.0747	0.3047	0.2977
SNP102	Но	0.1356	0.1695	0.0667	0.0333	0.1081	0.1224	0.1087
	He	0.1275	0.1565	0.1815	0.0650	0.1511	0.2474	0.1785
	Р	0.4753	0.3609	0.0001*	0.0223*	0.1475	0.0020*	0.0284*
	Fis	-0.0727	-0.0926	0.6296	0.4828	0.2745	0.5000	0.3842
	PIC	0.1184	0.1430	0.1638	0.0623	0.1379	0.2150	0.1609

TABLE 2. Observed heterozygosity (Ho), expected heterozygosity (He), (fixation index and polymorphic information content) values at 32 SNP loci of seven populations.

TABLE 2	. continued
---------	-------------

			Н	atchery populat	tion		Wild po	pulation
Locus		HJN	HYT	HWD	HPL	HCD	WMB	WSB
SNP109	Но	0.0339	0.2542	0.1695	0.1167	0.3611	0.1042	0.3261
	He	0.0661	0.2238	0.3060	0.2688	0.3940	0.1366	0.3313
	Р	0.0228*	0.1526	0.0016*	0.0001*	0.6142	0.1704	0.9129
	Fis	0.4825	-0.1456	0.4413	0.5623	0.0705	0.2295	0.0050
	PIC	0.0634	0.1973	0.2573	0.2310	0.3130	0.1260	0.2740
SNP115	Но	0.3390	0.3051	0.2545	0.3833	0.2703	0.3673	0.1333
	He	0.2839	0.3465	0.3229	0.3696	0.3110	0.3282	0.1998
	Р	0.0481*	0.3656	0.1311	0.7680	0.4333	0.3643	0.0544
	Fis	-0.2041	0.1120	0.2045	-0.0459	0.1190	-0.1308	0.3250
	PIC	0.2419	0.2845	0.2688	0.2994	0.2597	0.2721	0.1780
SNP123	Ho	0.3220	0.3621	0.2833	0.3559	0.4054	0.3400	0.4348
	He	0.4759	0.4790	0.4637	0.6080	0.4935	0.4709	0.4902
	Р	0.0123*	0.0612	0.0024*	0.9069	0.2710	0.0479*	0.4385
	Fis	0.3175	0.2376	0.3839	0.0067	0.1673	0.2707	0.1033
	PIC	0.3605	0.3621	0.3541	0.3724	0.3683	0.3575	0.3673
SNP131	Ho	0.4138	0.3390	0.2833	0.2833	0.3056	0.3000	0.2174
	He	0.3310	0.5007	0.2452	0.3696	0.2625	0.4467	0.2293
	Р	0.0137*	0.0118*	0.1033	0.0782	0.1780	0.0203*	0.7245
	Fis	-0.2609	0.3171	-0.1650	0.2270	-0.1803	0.3216	0.0417
	PIC	0.2743	0.3732	0.2137	0.2994	0.2254	0.3444	0.2011
SNP143	Ho	0.4576	0 4407	0.3729	0.4500	0.3514	0.4000	0.4565
5111115	He	0.3907	0.4137	0.3824	0.3864	0.4121	0.4848	0.4365
	P	0.1608	0.6084	0.8464	0.1744	0.3697	0.2120	0.7503
	Fis	-0.1813	-0.0742	0.0167	-0.1743	0.1357	0.1667	-0.0575
	PIC	0.3123	0.3261	0.3073	0.3098	0.3239	0.3648	0.3385
SNP146	Ho	0.1186	0.2069	0.1333	0.2500	0.1944	0.3600	0.0652
5111110	He	0.1977	0.3310	0.2801	0.4873	0.3658	0.4073	0.1421
	P	0.0090*	0.0071*	0.0003*	0.0001*	0.0067*	0.4124	0.0059*
	Fis	0.3949	0.3696	0.5200	0.4826	0.4610	0.1071	0.5361
	PIC	0.1769	0.2743	0.2302	0.3664	0.2057	0.3210	0.1307
SNP147	Ho	0.0172	0.4182	0.1500	0.0667	0.3235	0.1000	0.1957
5111147	He	0.0172	0.4085	0.1300	0.1541	0.3255	0.2851	0.1207
	P	1 0000	0.8581	0.4203	0.0009*	0.0381*	0.0000*	0.5929
	Fis	-0.0087	-0.0331	-0.0811	0.5636	0.3386	0.6456	0.0707
	PIC	0.0169	0 3220	0.1201	0.1411	0.3500	0.2424	0.1884
SNP148	Ho	0.0847	0.1864	0.0667	0.0339	0.1111	0.1429	0.0652
5141 140	He	0.1977	0.3165	0.1255	0.0555	0.1064	0.2013	0.1421
	P	0.0004*	0.0033*	0.0078*	0.0001	0.6743	0.0756	0.0060*
	Fis	0.5678	0.4059	0.4643	0.0228	-0.0588	0.2832	0.5361
	PIC	0.1769	0.2646	0.1168	0.0634	0.0995	0.1794	0.1307
SND140	Ho	0.3220	0.3550	0.4167	0.3103	0.3243	0.1600	0.1307
5141 147	Ho	0.2051	0.2051	0.3326	0.3868	0.4235	0.1000	0.4281
	D	0.2951	0.0367*	0.0115*	0.1386	0.4233	0.2982	0.4281
	Fie	-0.1006	-0.2165	-0.2632	0.1907	0.1333	0.4580	-0.0268
	DIC	-0.1000	0.2408	0.2754	0.1907	0.2238	0.4580	-0.0208
SND152	Ho	0.2490	0.2490	0.2754	0.3033	0.3303	0.2010	0.3336
5141 155	He	0.4257	0.1734	0.3326	0.4555	0.3245	0.4000	0.2620
	D	0.5907	0.0709	0.00115*	0.0000	0.7832	0.3007	0.4017
	Fie	_0.0038	0.5266	_0.0115	_0.2112	_0.0571	_0.0305	0.0109
	DIC	0.0930	0.3200	0.2032	0.2038	0.0571	0.0395	0.3073
	I IC	0.3123	0.3019	0.2754	0.2930	0.2391	0.3100	0.347

TABLE 2. continued

				Н	atchery populat	ion		Wild po	opulation
SNP154 Ho 0.3091 0.5085 0.2069 0.2667 0.4722 0.3800 0.3096 He 0.4239 0.4867 0.4444 0.5193 0.4754 0.4160 0.4517 P 0.0466* 0.7289 0.0000* 0.0005* 0.9680 0.5398 0.3270 PIC 0.3181 0.3662 0.3445 0.3661 0.3489 0.3772 0.1729 SNP155 Ho 0.44576 0.4068 0.3824 0.4364 0.3490 0.4403 0.3899 P 0.3128 0.6143 0.5839 0.1295 0.7632 0.1803 0.4120 Fis -0.1358 -0.0727 -0.0733 0.3146 0.3249 0.3300 0.2313 SNP163 Ho 0.2712 0.2069 0.4227 0.2033 0.7786 0.0075* Fis 0.0367 0.4425 0.1066 0.1778 -0.0490 0.3958 PIC 0.2313 0.03461 0.04257 0.1066 0.1778<	Locus		HJN	HYT	HWD	HPL	HCD	WMB	WSB
He 0.4239 0.4867 0.4444 0.5193 0.4754 0.4160 0.4171 P 0.0466* 0.7289 0.0000* 0.0005* 0.9680 0.5398 0.2158 PIC 0.3318 0.3662 0.3435 0.3610 0.3589 0.3270 0.3470 SNP155 He 0.4063 0.3824 0.4364 0.3899 0.4073 0.3899 P 0.3128 0.6143 0.8899 0.1925 0.7632 0.1003 0.4348 He 0.4063 0.3824 0.4364 0.3899 0.3103 0.4103 0.3899 0.3103 0.4103 0.3899 0.3113 0.3116 0.3899 0.3113 0.2191 0.3116 0.4291 0.3167 0.4001 0.2391 P.67303 0.0230 0.6954 0.3999 0.3454 0.4464 0.4177 0.0075* Fis 0.0367 0.4061 0.1739 0.0246 0.1675 0.2293 0.175 0.3214 0.3167 0.4401 0.3173 0.1739 </td <td>SNP154</td> <td>Но</td> <td>0.3091</td> <td>0.5085</td> <td>0.2069</td> <td>0.2667</td> <td>0.4722</td> <td>0.3800</td> <td>0.3696</td>	SNP154	Но	0.3091	0.5085	0.2069	0.2667	0.4722	0.3800	0.3696
P 0.0466* 0.7289 0.0000* 0.0005* 0.9680 0.5398 0.2158 Fis 0.2641 -0.0536 0.3340 0.3430 0.0072 0.1729 SNP155 Ho 0.4576 0.3062 0.3435 0.3610 0.3589 0.3270 0.3470 SNP155 Ho 0.4576 0.4063 0.3824 0.4364 0.3494 0.3869 0.4073 0.3899 P 0.3128 0.6143 0.5839 0.1932 -0.0622 -0.1905 -0.1275 PIC 0.2112 0.2069 0.4237 0.2203 0.3243 0.3600 0.2391 PIC 0.2112 0.2069 0.4237 0.2203 0.3243 0.3600 0.2391 Fis 0.0367 0.4051 0.0425 0.1066 0.1778 0.0075* Fis 0.0367 0.4353 0.0172* 0.3020 0.2162 0.1680 0.1739 PIC 0.2419 0.2873 0.3446 0.2162 0.1680<		He	0.4239	0.4867	0.4444	0.5193	0.4754	0.4160	0.4517
Fis 0.2641 0.0536 0.3304 0.4360 0.074 0.0772 0.1729 PIC 0.3318 0.3662 0.3435 0.3610 0.3589 0.3270 0.3470 SNP155 Ho 0.4476 0.4068 0.4667 0.4667 0.4054 0.4380 He 0.4063 0.824 0.3394 0.3369 0.4103 0.3899 Fis -0.1558 -0.0727 -0.0783 -0.1932 -0.0622 -0.1905 -0.1275 PIC 0.2112 0.2069 0.4237 0.2203 0.3243 0.3500 0.2311 SNP163 Ho 0.2712 0.2069 0.4237 0.2033 0.7786 0.4075 Fis 0.0367 0.4051 0.4425 0.1066 0.1778 -0.0490 0.3958 PIC 0.2419 0.2175 0.2078 0.2331 0.2369 0.1655 0.2233 PIC 0.2608 0.1275 0.0172 0.3020 0.6000 0.3733 0.1		Р	0.0466*	0.7289	0.0000^{*}	0.0005^{*}	0.9680	0.5398	0.2158
PIC 0.3318 0.3662 0.3435 0.3610 0.3589 0.3270 0.3470 SNP155 Ho 0.4576 0.4068 0.4667 0.4667 0.4054 0.4800 0.4339 Fis -0.1328 -0.6173 -0.532 0.7632 0.1803 0.4120 Fis -0.1358 -0.0777 -0.0783 -0.1995 -0.1275 PIC 0.3218 0.3073 0.3391 0.3146 0.3089 0.3219 0.3113 SNP163 He 0.2839 0.3508 0.4463 0.24247 0.3999 0.3467 0.4001 P 0.7303 0.0030 0.6954 0.2933 0.2533 0.7786 0.0075* Fis 0.0307 0.4463 0.2162 0.3167 0.2843 0.3174 SNP164 He 0.1017 0.1356 0.1333 0.2026 0.1805 0.1739 Fis 0.000* 0.4753 0.0142 0.1017 0.3022 0.6000 0.3733 0.1356		Fis	0.2641	-0.0536	0.5304	0.4360	-0.0074	0.0772	0.1729
SNP155 Ho 0.4576 0.4068 0.4667 0.4667 0.4054 0.4800 0.4348 He 0.4063 0.3824 0.4364 0.3944 0.3869 0.4073 0.3899 P 0.3128 0.6143 0.5839 0.1295 0.7632 0.1803 0.4120 PIC 0.3128 0.0077 -0.0783 -0.1932 -0.0622 -0.1905 -0.1275 PIC 0.3218 0.3073 0.3391 0.3146 0.3089 0.3219 0.3161 SNP163 Ho 0.2712 0.2069 0.4237 0.2203 0.3243 0.3600 0.2391 PIC 0.0307 0.4051 0.0425 0.1066 0.1778 -0.0490 0.3958 PIC 0.2313 0.2333 0.2000 0.2162 0.1800 0.1739 SNP164 Ho 0.1017 0.1336 0.2000 0.02583 0.3174 SNP177 Ho 0.3036 0.4000 0.2358 0.3031 0.3734 <td></td> <td>PIC</td> <td>0.3318</td> <td>0.3662</td> <td>0.3435</td> <td>0.3610</td> <td>0.3589</td> <td>0.3270</td> <td>0.3470</td>		PIC	0.3318	0.3662	0.3435	0.3610	0.3589	0.3270	0.3470
He 0.4063 0.3824 0.4364 0.3944 0.3869 0.4073 0.3899 P 0.3128 0.6143 0.5839 0.1295 0.7632 0.1803 0.4120 PIC 0.3218 0.0077 -0.0783 -0.1932 -0.0622 -0.1005 PIC 0.3218 0.3508 0.4463 0.2487 0.3999 0.3467 0.4001 P 0.7303 0.0030 0.6954 0.3993 0.2533 0.3178 0.0075* Fis 0.0377 0.4463 0.2487 0.3999 0.3467 0.4001 P 0.7303 0.0301 0.4463 0.2162 0.3167 0.2843 0.3174 SNP164 Ho 0.1017 0.1356 0.1333 0.2000 0.1655 0.2293 P 0.0000* 0.4753 0.0172* 0.3002 0.6000 0.3733 0.1356 Fis 0.6067 -0.0727 0.3311 0.3464 0.0491 0.2011 SNP177	SNP155	Но	0.4576	0.4068	0.4667	0.4667	0.4054	0.4800	0.4348
P 0.3128 0.6143 0.5839 0.1295 0.7632 0.1803 0.4120 Fis -0.1358 -0.0727 -0.0783 -0.1932 -0.0622 -0.1905 -0.1275 PIC 0.3218 0.3073 0.3391 0.3146 0.3080 0.2219 0.3113 SNP163 Ho 0.2712 0.2069 0.4237 0.2203 0.3243 0.3600 0.2291 PIC 0.7303 0.0030 0.6954 0.3993 0.2533 0.7786 0.0075* Fis 0.0367 0.4051 0.0425 0.1066 0.1778 -0.0490 0.3958 PIC 0.0200* 0.4753 0.0172* 0.3002 0.6000 0.7333 0.1555 P 0.0000* 0.4753 0.0172* 0.3002 0.6000 0.3733 0.1356 Fis 0.6667 -0.0727 0.3531 0.1346 0.0754 0.4040 0.2041 SNP177 Ho 0.3036 0.40000 0.2586 0		He	0.4063	0.3824	0.4364	0.3944	0.3869	0.4073	0.3899
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Р	0.3128	0.6143	0.5839	0.1295	0.7632	0.1803	0.4120
PIC 0.3218 0.3073 0.3391 0.3146 0.3089 0.3219 0.3113 SNP163 Ho 0.2712 0.2069 0.4237 0.2203 0.3243 0.3600 0.2391 P 0.7303 0.0030 0.6954 0.3993 0.2533 0.7786 0.0075* Fis 0.0367 0.4051 0.0425 0.1066 0.1778 -0.0490 0.3958 PIC 0.2419 0.2873 0.3446 0.2162 0.1655 0.2293 PIC 0.0000* 0.4755 0.0172* 0.3020 0.6000 0.3733 0.1356 Fis 0.6067 -0.0727 0.3531 0.1346 0.075* -0.0989 0.2331 SNP177 Ho 0.3036 0.40000 0.2586 0.3051 0.3784 0.3469 0.3953 JHe 0.43642 0.3175 0.4321 0.3640 0.0368* 0.7284 Fis 0.2935 -0.1081 0.1278 0.0944 0.3571 0.41		Fis	-0.1358	-0.0727	-0.0783	-0.1932	-0.0622	-0.1905	-0.1275
SNP163 Ho 0.2712 0.2069 0.4237 0.2203 0.3243 0.3600 0.2391 He 0.2830 0.3508 0.4463 0.2487 0.3999 0.3467 0.4001 P 0.7303 0.0030 0.6954 0.3993 0.2533 0.7786 0.0075* PIC 0.2419 0.2873 0.3446 0.2162 0.1800 0.1739 SNP164 Ho 0.1017 0.1556 0.1333 0.0200 0.2162 0.1800 0.1739 PIC 0.2250 0.1775 0.0075 -0.0989 0.2333 PIC 0.2250 0.1184 0.1849 0.2044 0.2064 0.1504 0.2011 SNP177 Ho 0.3036 0.40000 0.2586 0.3051 0.3784 0.3469 0.3953 Fis 0.2935 -0.1081 0.1278 0.0944 0.1367 0.2871 0.0413 PIC 0.3374 0.2959 0.2525 0.3378 0.3422 0.3663		PIC	0.3218	0.3073	0.3391	0.3146	0.3089	0.3219	0.3113
He 0.2839 0.3508 0.4463 0.2487 0.3999 0.3467 0.4001 P 0.7303 0.0030 0.6954 0.3993 0.2533 0.7786 0.0075* Fis 0.0367 0.4051 0.0425 0.1066 0.1778 -0.0490 0.3958 SNP164 Ho 0.1017 0.1356 0.1333 0.2000 0.1655 0.2293 P 0.0000* 0.4753 0.0172* 0.3002 0.6000 0.3733 0.1356 Fis 0.6067 -0.0727 0.3511 0.1346 0.0754 0.40244 0.2044 0.2044 0.1504 0.2011 SNP177 Ho 0.3036 0.40000 0.2586 0.3051 0.3784 0.3469 0.3953 PIC 0.235* -0.1081 0.1278 0.0944 0.1367 0.2871 0.0413 PIC 0.3374 0.2959 0.2525 0.3378 0.3427 0.2633 0.2270 0.0607 Fis 0.2935 <td>SNP163</td> <td>Но</td> <td>0.2712</td> <td>0.2069</td> <td>0.4237</td> <td>0.2203</td> <td>0.3243</td> <td>0.3600</td> <td>0.2391</td>	SNP163	Но	0.2712	0.2069	0.4237	0.2203	0.3243	0.3600	0.2391
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		He	0.2839	0.3508	0.4463	0.2487	0.3999	0.3467	0.4001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Р	0.7303	0.0030	0.6954	0.3993	0.2533	0.7786	0.0075*
PIC 0.2419 0.2873 0.3446 0.2162 0.3167 0.2843 0.3174 SNP164 Ho 0.1017 0.1356 0.1333 0.2000 0.2162 0.1800 0.1739 He 0.2608 0.1275 0.2078 0.2369 0.1655 0.2333 P 0.0000* 0.4753 0.0172* 0.3002 0.6000 0.3733 0.1356 Fis 0.6067 -0.0727 0.3531 0.1346 0.075 -0.0989 0.2333 SNP177 Ho 0.3036 0.40000 0.2586 0.3051 0.3784 0.3469 0.3935 Fis 0.2935 -0.1081 0.1775 0.4321 0.3640 0.0368* 0.3274 SNP178 Ho 0.3559 0.2881 0.3500 0.2203 0.3514 0.2653 0.0889 He 0.4463 0.3174 0.0295 0.2167 0.4072 0.1512 0.6617 SNP178 Ho 0.2520 0.0103* 0.3184		Fis	0.0367	0.4051	0.0425	0.1066	0.1778	-0.0490	0.3958
SNP164 Ho 0.1017 0.1356 0.1333 0.2000 0.2162 0.1800 0.1739 He 0.2608 0.1275 0.2078 0.2331 0.2369 0.1655 0.2293 P 0.0000* 0.4753 0.0172* 0.3002 0.6000 0.3733 0.1356 Fis 0.6067 -0.0727 0.3511 0.1346 0.075 -0.0989 0.2333 NP177 Ho 0.3036 0.40000 0.2586 0.3051 0.3784 0.3469 0.3953 He 0.4335 0.3643 0.2991 0.5088 0.4443 0.4917 0.4172 P 0.0258* 0.4452 0.3175 0.4321 0.3640 0.0368* 0.7284 Fis 0.2935 -0.1081 0.1278 0.0944 0.1367 0.2871 0.0413 SNP178 Ho 0.3559 0.2281 0.3378 0.3422 0.3683 0.3274 SNP178 Ho 0.1202 0.1037* 0.3184		PIC	0.2419	0.2873	0.3446	0.2162	0.3167	0.2843	0.3174
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SNP164	Но	0.1017	0.1356	0.1333	0.2000	0.2162	0.1800	0.1739
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		He	0.2608	0.1275	0.2078	0.2331	0.2369	0.1655	0.2293
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Р	0.0000^{*}	0.4753	0.0172*	0.3002	0.6000	0.3733	0.1356
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fis	0.6067	-0.0727	0.3531	0.1346	0.075	-0.0989	0.2333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PIC	0.2250	0.1184	0.1849	0.2044	0.2064	0.1504	0.2011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SNP177	Но	0.3036	0.40000	0.2586	0.3051	0.3784	0.3469	0.3953
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		He	0.4336	0.3643	0.2991	0.5088	0.4443	0.4917	0.4172
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Р	0.0258*	0.4452	0.3175	0.4321	0.3640	0.0368*	0.7284
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fis	0.2935	-0.1081	0.1278	0.0944	0.1367	0.2871	0.0413
SNP178 Ho 0.3559 0.2881 0.3500 0.2203 0.3514 0.2653 0.0889 He 0.4463 0.4342 0.4021 0.4521 0.3588 0.3158 0.2657 P 0.1202 0.0103* 0.3184 0.0051* 0.8981 0.2770 0.0001* Fis 0.1957 0.3307 0.1223 0.3757 0.0072 0.1512 0.6617 PIC 0.3446 0.3378 0.3192 0.2906 0.2913 0.2637 0.2283 SNP183 Ho 0.2982 0.2143 0.1500 0.2167 0.4054 0.2600 0.3261 He 0.4150 0.4524 0.3517 0.5335 0.4832 0.4160 0.5033 P 0.0360* 0.0001* 0.0000* 0.0000* 0.3220 0.0089* 0.0149* Fis 0.2750 0.5220 0.5699 0.5378 0.1494 0.3686 0.3450 PIC 0.3268 0.3476 0.3232 0.4443 <td></td> <td>PIC</td> <td>0.3374</td> <td>0.2959</td> <td>0.2525</td> <td>0.3378</td> <td>0.3422</td> <td>0.3683</td> <td>0.3274</td>		PIC	0.3374	0.2959	0.2525	0.3378	0.3422	0.3683	0.3274
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SNP178	Но	0.3559	0.2881	0.3500	0.2203	0.3514	0.2653	0.0889
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		He	0.4463	0.4342	0.4021	0.4521	0.3588	0.3158	0.2657
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Р	0.1202	0.0103*	0.3184	0.0051*	0.8981	0.2770	0.0001*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fis	0.1957	0.3307	0.1223	0.3757	0.0072	0.1512	0.6617
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PIC	0.3446	0.3378	0.3192	0.2906	0.2913	0.2637	0.2283
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SNP183	Ho	0.2982	0.2143	0.1500	0.2167	0.4054	0.2600	0.3261
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		He	0.4150	0 4524	0.3517	0.5335	0.4832	0.4160	0.5033
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P	0.0360*	0.0001*	0.0000*	0.0000*	0.3220	0.0089*	0.0149*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fis	0.2750	0.5220	0.5699	0.5378	0.1494	0.3686	0.3450
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PIC	0.3268	0.3478	0.2879	0.3589	0.3630	0.3270	0.3739
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNP185	Ho	0.0169	0.0847	0.0167	0.0339	0.3243	0.4000	0.2174
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		He	0.0169	0.1421	0.1108	0.0336	0.3436	0.3232	0.4443
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Р	1.0000	0.0164*	0.0000*	0.8955	0.7308	0.0284*	0.0005*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fis	-0.0085	0.3986	0.8483	-0.0172	0.0431	-0.2500	0.5054
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PIC	0.0167	0.1310	0.1038	0.0327	0.2815	0.2688	0.3429
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SNP189	Ho	0.2373	0.1017	0.1500	0.1500	0.1622	0.0200	0.1739
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5111 107	He	0.2109	0.2839	0.1679	0 1399	0.2755	0.0588	0.1605
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P	0.1852	0.0000*	0.4413	0.4203	0.0226*	0.0091*	0.4138
PIC 0.1810 0.0505 0.0512 0.1011 0.1612 0.0501 0.0502 SNP213 Ho 0.3571 0.3621 0.4500 0.4500 0.4054 0.4600 0.2609 He 0.4633 0.4610 0.4021 0.4486 0.4535 0.4160 0.4587 P 0.0854 0.1013 0.3369 0.7155 0.5146 0.4383 0.0022* Fis 0.2222 0.2078 -0.1285 -0.055 0.0939 -0.1170 0.4250 PIC 0.3537 0.3526 0.3192 0.3356 0.3473 0.3270 0.3508		Fis	-0.1346	0.6388	0.0992	-0.0811	0.4032	0.6564	-0.0952
SNP213 Ho 0.3571 0.3621 0.4500 0.4530 0.4054 0.4600 0.2609 He 0.4633 0.4610 0.4021 0.4486 0.4535 0.4160 0.4587 P 0.0854 0.1013 0.3369 0.7155 0.5146 0.4383 0.0032* Fis 0.2222 0.2078 -0.1285 -0.055 0.0939 -0.1170 0.4250 PIC 0.3537 0.3526 0.3192 0.3356 0.3473 0.3270 0.3508		PIC	0.1872	0.2419	0.1527	0.1291	0.2348	0.0565	0.1462
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SNP213	Ho	0.3571	0.3621	0.4500	0.4500	0 4054	0.4600	0.2609
P 0.0854 0.1013 0.3369 0.7155 0.5146 0.4383 0.0032* Fis 0.2222 0.2078 -0.1285 -0.055 0.0939 -0.1170 0.4250 PIC 0.3537 0.3526 0.3192 0.3356 0.3473 0.3270 0.3508	5111 213	He	0.4633	0.4610	0.4021	0.4386	0 4535	0.4160	0.4587
Fis 0.2222 0.2078 -0.1285 -0.055 0.0939 -0.1170 0.4250 PIC 0.3537 0.3526 0.3192 0.3356 0.3473 0.3270 0.3508		P	0.0854	0 1013	0 3369	0.7155	0 5146	0 4383	0.0032*
PIC 0.3537 0.3526 0.3192 0.3356 0.3473 0.3270 0.3508		Fis	0 2222	0.2078	-0.1285	-0.055	0.0930	-0.1170	0.4250
		PIC	0.3537	0.3526	0.3192	0.3356	0.3473	0.3270	0.3508

			Н	atchery populat	tion		Wild pop	oulation
Locus		HJN	HYT	HWD	HPL	HCD	WMB	WSB
SNP217	Но	0.2586	0.4915	0.2321	0.2069	0.2500	0.3600	0.3478
	He	0.4382	0.5037	0.4336	0.4510	0.4597	0.4396	0.4099
	Р	0.0019*	0.8515	0.0005*	0.0003*	0.0056*	0.2005	0.3057
	Fis	0.4047	0.0158	0.4597	0.4821	0.4485	0.1728	0.1422
	PIC	0.3400	0.3747	0.3374	0.3197	0.3506	0.3405	0.3233
SNP223	Ho	0.4407	0.2034	0.4237	0.2667	0.3784	0.3800	0.4130
	He	0.3651	0.3824	0.3559	0.2571	0.3999	0.3352	0.4365
	Р	0.0768	0.0005^{*}	0.1044	0.7623*	0.74100	0.3017	0.7136
	Fis	-0.2175	0.4636	-0.2007	-0.0458	0.0407	-0.1453	0.0432
	PIC	0.2964	0.3073	0.2906	0.2225	0.3167	0.2768	0.3385
Mean	Ho	0.2381	0.2624	0.2639	0.2489	0.2759	0.2760	0.2664
	He	0.2689	0.3256	0.3147	0.3011	0.3354	0.3188	0.3280
	Fis	0.1068	0.1871	0.1542	0.1661	0.1661	0.1255	0.1790
	PIC	0.2203	0.2620	0.2566	0.2434	0.2687	0.2585	0.2642

TABLE	2.	continued
-------	----	-----------

SNP = single-nucleotide polymorphism; PIC = polymorphic information content; HCD = Changdao; HJN = Jiaonan; HYT = Yantai, HWD = Wendeng; HPL = Penglai; WSB = Saiki Bay (Oita); WMB = Mutsu Bay (Aomori). *Significant deviation from Hardy–Weinberg equilibrium (P < 0.05).

TABLE 3. Nei's genetic identity (above diagonal) and genetic distance (below diagonal) at 32 SNP loci between seven populations of Apostichopus japonicus.

		Н	atchery populati	on		Wild p	opulation
Population	HJN	HYT	HWD	HPL	HCD	WMB	WSB
HJN	_	0.9889	0.9898	0.9915	0.9848	0.9909	0.9859
HYT	0.0112	_	0.9870	0.9896	0.9904	0.9868	0.9802
HWD	0.0102	0.0131	-	0.9904	0.9883	0.9866	0.9901
HPL	0.0085	0.0105	0.0097	_	0.9901	0.9888	0.9837
WCD	0.0153	0.0096	0.0118	0.0100	-	0.9857	0.9913
WMB	0.0091	0.0133	0.0135	0.0113	0.0144	_	0.9883
WSB	0.0142	0.0200	0.0100	0.0164	0.0087	0.0118	-

SNP = single-nucleotide polymorphism; HCD = Changdao, HJN = Jiaonan, HYT = Yantai; HWD = Wendeng; HPL = Penglai; WSB = Saiki Bay (Oita); WMB = Mutsu Bay (Aomori).

(Tm)-shift have been used to genotype SNP markers. The method of ARMS-PCR requires four primers to amplify larger fragments containing the SNP and two smaller fragments representing each of the two allele-specific products (Sun et al. 2010). The method of the Tm-shift uses 3'-terminal base of each allele-specific primer corresponding to one of the two SNP allelic variants, and GC-rich tails of different length are attached to the allele-specific primers. Then the PCR product with distinct Tm is generated, and genotypes can be determined (Yang et al. 2012). In comparison with these two methods, the HRM analysis demonstrates great advantages because it is simple, rapid, inexpensive, and efficient. The HRM method

can detect SNPs in small PCR amplicons and the processes of PCR amplification take place in the same tube in <2h (Wu et al. 2008; Jin et al. 2014). Besides, the genotypes of SNPs can be identified by the different shapes of melting curves which make it easy to discriminate different genotypes (Garritano et al. 2009).

Population Genetic Variability

In this study, the mean Ho and He were lower than those reported by Chen et al. (2008), which analyzed the genetic variation in wild and hatchery stocks from northern China using microsatellite markers. This suggests a greater number of SNP (at least 4×) is required due to there being only three possible genotypes for

Population	Hatchery population					Wild population	
	HJN	HYT	HWD	HPL	HCD	WMB	WSB
HJN	_						
HYT	0.0165*	_					
HWD	0.0172*	0.0163*	_				
HPL	0.0130*	0.0136*	0.0129	_			
HCD	0.0227*	0.0126	0.0148*	0.0140*	_		
WMB	0.0185*	0.0141	0.0145	0.0156	0.0163	_	
WSB	0.0228*	0.0236	0.0119	0.0215*	0.0121	0.0147	-

TABLE 4. Analysis of genetic differentiation between pairs of samples based on estimates of Fst (below diagonal).

HCD = Changdao; HJN = Jiaonan; HYT = Yantai; HWD = Wendeng; HPL = Penglai; WSB = Saiki Bay (Oita); WMB = Mutsu Bay (Aomori).

*Significant at P < 0.05.

TABLE 5. Analysis of molecular variance of 32 SNP loci in the wild and hatchery populations of Apostichopus japonicus.

Division	Source of variation	Degrees of freedom (df)	Percentage of variation (%)	Fst
None	Among all the populations	6	2	0.0021
	Within populations	735	98	
Wild versus hatchery	Among all the populations	1	1	0.0095
	Within populations	740	99	
Wild	Among all the populations	1	2	0.0181
	Within populations	190	98	
Hatchery	Among all the populations	4	2	0.0202
	Within populations	545	98	

SNP = single-nucleotide polymorphism.

a SNP as opposed to microsatellites. However, in some instances of microsatellites, new alleles are described, which are artifacts in fact (Vignal et al. 2002). For SNP markers, the small number of alleles allows rapid genotyping with low error rates, and the character of the most abundant variation in the entire genome increases the polymorphisms (Narum et al. 2008). With the advent of next-generation sequencing, the SNPs will likely advance population genetics rapidly because SNPs have a low cost to score and are easy to identify from nonmodel organisms (Ekblom and Galindo 2011).

DNA markers can be good monitors of genetic shifts over generations of domestication. In the study of black tiger shrimp, *Penaeus monodon*, using microsatellites, Dixon et al. (2008) noted large decline in diversity from the wild-caught stocks to the domesticated stocks and the losses of genetic diversity were observed within three generations in comparison with wild populations. The loss of genetic diversity in farmed populations is generally caused by small effective population sizes. A high level of genetic diversity is essential for long-term survival of populations, as their ability to adapt to changing environments lies in the extent of variation (Chen et al. 2008; Xing et al. 2014). The reduced genetic diversity may cause pernicious effects on some commercial traits such as survival, growth rate, and disease resistance (An et al. 2011b). Therefore, it is vital to evaluate and monitor the genetic diversity and structure of hatchery stocks using molecular markers. In this study, compared with the wild stocks of A. japonicas, there are no obvious differences in the average Ho, He, and the PIC of the hatchery stocks. This indicates that hatchery sea cucumbers have considerable genetic variation through the process of domestication. In hatchery stocks, the genetic variability is likely related to the number of parents used for reproductive stock (An et al. 2013a). In China, the seeds of sea cucumbers are produced in hatcheries, where hundreds of cultured mature males and females as parents collected from different farms are used in an artificial mass spawning. In addition, the parents used for spawning at different times often have been mixed with each other. The stock enhancement programs of sea cucumbers may maintain the high genetic variability of cultivated populations instead of genetic diversity reduction. In Korea, the red sea cucumbers also maintain high genetic diversity because the parents used for spawning were caught from the near coast (An et al. 2013b). There are also other marine organisms reported to maintain high genetic diversity in the hatchery populations (Pan and Yang 2010; An et al. 2013a; Kong et al. 2014).

A total of 30 loci (except SNP143 and SNP155) exhibited deviations of HWE in both the wild and hatchery populations of sea cucumber, showing heterozygote deficiency. These deviations may account for null alleles, nonrandom-mating, more than two independent populations as parents and natural or artificial selection. Besides, the high *F* is values of most SNP loci suggests that nonrandom mating may have occurred (An et al. 2013c). Similar results were also reported in the Chen et al. (2008) and An et al. (2013b).

Population Genetic Differentiation

In this study, pairwise comparison *F*st analysis showed there is no significant differentiation between the wild and hatchery stocks. The high genetic identity (from 0.9802 to 0.9915) demonstrates that these stocks regardless of whether wild populations or the hatchery populations have high proportions of identical alleles. The AMOVA analysis revealed differentiation generated at the level of "within the populations," which explains why there is no differentiation between the wild and hatchery populations. Their current population structures might result from different founder populations and different selection procedures.

In conclusion, we developed 51 polymorphic EST-SNPs of *A. japonicas* and compared the genetic variation between Chinese hatchery and Japanese wild sea cucumbers using the SNP

markers. In this study, the Chinese hatchery stocks showed no reduction in genetic diversity compared with the wild stocks from Japan. This information may be applied for future genetic improvement of *A. japonicas* by selective breeding and design suitable management guidelines for sea cucumber.

Acknowledgments

The study was supported by the grants from Scientific and Technical Supporting Program (2011BAD13B03), National Marine Public Welfare Research Program (201305005), and Doctoral Program of Ministry of Education of China (20130132110009).

Literature Cited

- Abadía-cardoso, A., A. J. Clemento, and J. C. Garza. 2011. Discovery and characterization of single-nucleotide polymorphisms in steelhead/rainbow trout, *Oncorhynchus mykiss*. Molecular Ecology Resources 11:31–49.
- Aguilar-Espinoza, A., N. Valderrama-Aravena, R. Farlora, F. L. D. L. Cruz, and C. Gallardo-Escárate. 2014. Development of novel polymorphic EST-SSR markers in Californian abalone, *Haliotisrufescens* and genetic analysis in wild and hatchery-bred populations. Aquaculture Research 45(12):1942–1952.
- An, H. S., B. H. Kim, J. W. Lee, C. M. Dong, S. K. Kim, and Y. C. Kim. 2011a. Comparison between wild and hatchery populations of Korean Pen Shell (*Atrina pectinata*) using microsatellite DNA markers. International Journal of Biological Sciences 12:6024–6039.
- An, H. S., S. G. Byun, Y. C. Kim, J. W. Lee, and J. I. Myeong. 2011b. Wild and hatchery populations of Korean Starry Flounder (*Platichthys stellatus*) compared using microsatellite DNA markers. International Journal of Molecular Sciences 12:9189–9202.
- An, H. S., J. W. Lee, Y. C. Kim, J. B. Kim, D. S. Chang, J. Y. Park, J. I. Myeong, and C. M. An. 2013a. Genetic differences between wild and hatchery populations of Korean spotted sea bass (*Lateolabrax maculatus*) inferred from microsatellite markers. Genes and Genomics 35:671–680.
- An, H. S., J. W. Lee, S. W. Hong, H. N. Hong, J. Y. Park, J. I. Myeong, and C. M. An. 2013b. Genetic differences between wild and hatchery populations of red sea cucumber (*Stichopus japonicus*) inferred from microsatellite markers: implications for production and stocking programs design. Genes and Genomics 35:709–717.
- An, H. S., J. W. Lee, W. J. Kim, H. J. Lim, E. M. Kim, S. G. Byun, Y. B. Hur, J. Y. Park, J. I. Myeong, and C. M. An. 2013c. Comparative genetic diversity of

wild and hatchery-produced Pacific oyster (*Crassostrea gigas*) populations in Korea using multiplex PCR assays with nine polymorphic microsatellite markers. Genes and Genomics 35:805–815.

- Bai, J., Q. Li, L. F. Kong, and R. H. Li. 2009. Characterization of 20 single nucleotide polymorphism markers in the Pacific oyster (*Crassostrea gigas*). Animal Genetics 40:1001–1005.
- Bester, A. E., R. Roodt-Wilding, and H. A. Whitaker. 2008. Discovery and evaluation of single nucleotide polymorphisms (SNPs) for *Haliotis midae*: A targeted EST approach. Animal Genetics 39:321–324.
- BOF (Bureau of Fisheries, Ministry of Agriculture, People's Republic of China). 2013. China fishery statistical yearbook, 2013. China Agriculture Press, Beijing, China (in Chinese).
- Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32:314–331.
- **Chen, L. M., Q. Li, and J. M. Yang.** 2008. Microsatellite genetic variation in wild and hatchery populations of the sea cucumber (*Apostichopus japonicus* Selenka) from northern China. Aquaculture Research 39: 1541–1549.
- Clemento, A. J., A. Abadía-cardoso, H. A. Starks, and J. C. Garza. 2011. Discovery and characterization of single nucleotide polymorphisms in Chinook salmon, *Oncorhynchus tshawytscha*. Molecular Ecology Resources 11:50–66.
- Dixon, T. J., G. J. Coman, S. J. Arnold, M. J. Sellars, R. E. Lyons, L. Dierens, N. P. Preston, and Y. Li. 2008. Shifts in genetic diversity during domestication of Black Tiger prawn, *Penaeus monodon*, using two multiplexed microsatellite systems. Aquaculture 283:1–6.
- Du, H. X., Z. M. Bao, J. J. Yan, M. L. Tian, X. Y. Mu, S. Wang, and W. Lu. 2012. Development of 101 gene-based single nucleotide polymorphism markers in sea cucumber, *Apostichopus japonicas*. International Journal of Molecular Sciences 13:7080–7097.
- Ekblom, R. and J. Galindo. 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15.
- Gao, L. L., M. Chen, Y. Q. Chang, N. J. Ji, and C. Z. Li. 2013. Development of SNP markers associated with defense mechanism of sea cucumber, *Apostichopus japonicas*. Conservation Genetics Resources 5:587–591.
- Garritano, S., F. Gemignani, C. Voegele, T. Nguyen-Dumont, F. Le Calvez-Kelm, D. De Silva, F. Lesueur, S. Landi, and S. V. Tavtigian. 2009. Determining the effectiveness of high resolution melting analysis for SNP genotyping and mutation scanning at the *TP53* locus. BMC Genetics 10:5.
- Henshall, J. M., L. Dierens, and M. J. Sellars. 2014. Quantitative analysis of low-density SNP data for parentage assignment and estimation of family contributions to pooled samples. Genetics, Selection, Evolution 46:51–67.

- Hubert, S., J. T. Bussey, B. Higgins, B. A. Curtis, and S. Bowman. 2009. Development of single nucleotide polymorphism markers for Atlantic cod (*Gadus morhua*) using expressed sequences. Aquaculture 296:7–14.
- Jin, Y. L., L. F. Kong, H. Yu, and Q. Li. 2014. Development, inheritance and evaluation of 55 novel single nucleotide polymorphism markers for parentage assignment in the Pacific oyster (*Crassostrea gigas*). Genes and Genomics 36:129–141.
- Karlsson, S., T. Moen, S. Lien, K. A. Glover, and K. Hindar. 2011. Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip. Molecular Ecology Resources 11: 247–253.
- Kim, H., C. J. Schmidt, K. S. Decker, and M. G. Emara. 2003. A double-screening method to identify reliable candidate non-synonymous SNPs from chicken EST data. Animal Genetics 34:249–254.
- Kong, L. F., J. Bai, and Q. Li. 2014. Comparative assessment of genomic SSR, EST–SSR and EST–SNP markers for evaluation of the genetic diversity of wild and cultured Pacific oyster, *Crassostrea gigas* Thunberg. Aquaculture 420:s85–s91.
- Kongchum, P., Y. Palt, E. M. Hallerman, G. Hulata, and L. David. 2010. SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (*Cyprinus carpio*). Fish and Shellfish Immunology 29:356–361.
- Li, Q., L. M. Chen, and L. F. Kong. 2009. A genetic linkage map of the sea cucumber, *Apostichopus japonicus* (Selenka), based on AFLP and microsatellite markers. Animal Genetics 4:678–685.
- McGlauffin, M. T., M. J. Smith, J. T. Wang, S. F. Young, N. Chen, Y. C. Lee, C. Pascal, L. W. Seeb, J. Stevens, and J. E. Seeb. 2010. High-resolution melting analysis for the discovery of novel single-nucleotide polymorphisms in rainbow and cutthroat trout for species identification. Transactions of the American Fisheries Society 139:676–684.
- Meirmans, P. G. 2012. AMOVA-based clustering of population genetic data. Journal of Heredity 103:744–750.
- Narum, S. R., M. Banks, T. D. Beacham, M. R. Bellinger, M. R. Campbell, J. Dekoning, A. Elz, C. M. Guthrie III, C. Kozfkay, K. Z. Miller, P. Moran, R. Phillips, L. W. Seeb, C. T. Smith, K. Warheit, S. F. Young, and J. C. Garza. 2008. Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms. Molecular Ecology 17:3464–3477.
- Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.
- Pan, G. and J. Z. Yang. 2010. Analysis of microsatellite DNA markers reveals no genetic differentiation between wild and hatchery populations of Pacific Threadfin in Hawaii. International Journal of Biological Sciences 6:827–833.

- Peakall, R. and P. E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28:2537–2539.
- Qi, H. G., X. Liu, and G. F. Zhang. 2008. Characterization of 12 single nucleotide polymorphisms (SNPs) in Pacific abalone, *Haliotis discus hannai*. Molecular Ecology Resources 8:974–976.
- Rafferty, J. P. 2010. New thinking about evolution. Rosen Education Service, New York, New York, USA.
- Sellars, M. J., M. Dierens, S. McWilliam, B. Little, B. Murphy, G. J. Coman, B. Barendse, and J. Henshall. 2012. Comparison of microsatellite and SNP DNA markers for pedigree assignment in Black Tiger shrimp, *Penaeus monodon*. Aquaculture Research 45:417–426.
- Sun, W. J., Q. Li, and L. F. Kong. 2010. Characterization of thirteen single nucleotide polymorphism markers in the sea cucumber (*Apostichopus japonicus*). Conservation Genetics Resources 2:141–144.
- Taniguchi, N. 2004. Genetic factors in brood-stock management for seed production. Reviews in Fish Biology and Fisheries 13:177–185.
- Vignal, A., D. Milan, M. Sancristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics, Selection, Evolution 34:275–305.
- Weir, B. S. and C. C. Cockerham. 1984. Estimating *F*-statistics for the analysis of population structure. Evolution 38:1358–1370.

- Wu, S. B., M. G. Wirthensohn, P. Hunt, J. P. Gibson, and M. Sedgley. 2008. High resolution melting analysis of almond SNPs derived from ESTs. Theoretical and Applied Genetics 118:1–14.
- Xing, K., M. L. Gao, and H. J. Li. 2014. Genetic differentiation between natural and hatchery populations of Manila clam (*Ruditapes philippinarum*) based on microsatellite markers. Genetics and Molecular Research 13:237–245.
- Yang, A. F., D. P. Sun, S. K. Liu, Y. Dong, Z. Chen, and Z. C. Zhou. 2012. Characterization of fifteen SNP markers by mining EST in sea cucumber, *Apostichopus japonicas*. Journal of Genetics 91:e49–e53.
- Zhong, X. X., Q. Li, H. Yu, and L. F. Kong. 2013. Development and validation of single nucleotide polymorphism markers in the Pacific oyster, *Crassostrea gigas*, using high resolution melting analysis. Journal of the World Aquaculture Society 44:455–465.
- Zhou, Z. C., Y. Dong, H. J. Sun, A. F. Yang, Z. Chen, S. Gao, J. W. Jiang, X. Y. Guan, B. Jiang, and B. Wang. 2014. Transcriptome sequencing of sea cucumber (*Apostichopus japonicus*) and the identification of gene-associated markers. Molecular Ecology Resources 14:127–138.
- Zhu, Y. L., Q. J. Song, D. L. Hyten, C. P. V. Tassell, L. K. Matukumalli, D. R. Grimm, S. M. Hyatt, E. W. Fickus, N. D. Young, and P. B. Cregan. 2003. Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134.