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Abstract
Golden shell color and mineral content are important economic traits of Pacific oyster (Crassostrea gigas). In this study, we
mapped a series of quantitative trait loci (QTLs) that control zinc (Zn) and magnesium (Mg) content, shell color and growth
performance to two sex-averaged linkagemaps from the FAM-A and FAM-B families. In total, ten QTLs were identified in seven
linkage groups (LGs) in the FAM-B family, and seven QTLs were identified in four linkage groups in the FAM-A family. Two
QTLs affecting the trait of golden shell color were identified in LG8 of the FAM-A and LG10 of the FAM-B families, which
could explain 20.2 and 10.5% of the phenotypic variations, respectively. Two QTLs for Zn content were identified that could
contribute to 17.9 and 34.44% of the phenotypic variations in FAM-A. Six QTLs for Zn and Mg contents were identified in four
LGs (LG1, LG2, LG5, and LG9) in FAM-B, which explained 13.5–26.7% of the phenotypic variations. In addition, seven QTLs
related to oyster growth were recognized in both FAM-A and FAM-B families accounting for 14.6–36.7% of the phenotypic
variations. All of the DNA markers in QTL regions were blasted and 14 genes associated with above traits were identified. The
mRNA expression of these genes was determined by quantitative RT-PCR. These QTLs and candidate genes could be used as
potential targets for marker-assisted selection in C. gigas breeding.
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Introduction

As an economically important aquatic species, Pacific oyster
(Crassostrea gigas) is widely distributed throughout the coast-
al areas of Japan, China, and Korea. It has the highest

production in farmed oyster of the world. In 2015, its global
production reached 583,464 tons (FAO 2017). As a result of
its importance, the success of C. gigas aquaculture is partially
ascribed to selective breeding for larger size, rapid growth
rate, appealing color of shell and mantle, and higher survival
rate (Dégremont et al. 2007; Li et al. 2011a; Wang et al. 2012).
With the increased application of molecular biotechnology,
the marker-assisted selection (MAS) is more effective in ac-
celerating the selective breeding program of C. gigas.

Quantitative trait locus (QTL) mapping based on the geno-
typic data provides an effective approach to identify potential-
ly useful markers, and is essential for the MAS in genetic
breeding (Massault et al. 2008). Particularly, constructing
maps based on the expressed sequence tags (EST)-derived
simple sequence repeats (SSRs) are of greater value in com-
parative mapping for evolutionarily distant organisms and lo-
cating QTL in linkage maps (Serapion et al. 2004; Kessuwan
et al. 2016). QTL mapping studies using SSR have been suc-
cessfully applied to bivalve mollusk in order to identify the
genomic regions associated with various QTLs (Li et al. 2012;
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Bai et al. 2015; Lu et al. 2013). To date, approximately 480
SSRs have been developed in C. gigas (Huvet et al. 2000;
Sekino et al. 2003; Yu and Li 2007, 2008; Li et al. 2003;
Qiu et al. 2008a, b; Wang et al. 2008; Yamtich et al. 2005;
Qi et al. 2009; Yu et al. 2009; Li et al. 2009a, b, 2011b; Bai et
al. 2011). However, these SSRs are not sufficient for SSR-
based fine mapping studies. Moreover, several studies mainly
based on single nucleotide polymorphisms (SNPs) and ampli-
fied fragment length polymorphism (AFLP) havemapped loci
of C. gigas related to the growth traits (Guo et al. 2012),
inbreeding depression (Plough and Hedgecock 2011), disease
depression (Sauvage et al. 2010), and glycogen content and
shell pigmentation (Zhong et al. 2014). Therefore, QTL for
some other important traits based on SSR can be identified,
and the loci could be implemented to benefit producers by
MAS.

Shell color is an important economic trait of oysters in the
market. Appealing colors have a strong influence on the oyster
price by attracting consumer preference. As an important phe-
notypic trait of bivalve species, shell color is highly variable,
thus providing substantial numbers of variants for selection. In
the Pacific oyster, true-breeding lines with different shell
colors have been successfully developed over several genera-
tions (Ge et al. 2014). It has been shown that shell pigmenta-
tion is a quantitative trait (Brake et al. 2004; Evans et al.
2009). Although several studies have reported that the shell
color is highly regulated by the genetic program (Hedgecock
et al. 2006; Evans et al. 2009; Wan et al. 2017), the molecular
mechanism of shell pigmentation in C. gigas remains
unknown.

Pacific oyster is widely known for its rich contents of
minerals such as Zinc (Zn) and magnesium (Mg). Zinc
and magnesium are important minerals that play critical
roles in maintaining normal metabolic and physiological
conditions (Dato-Cajegas and Yakupitiyage 1996).
Mineral deficiencies lead to broad spectrum of diseases
in humans, and are considered to be a serious global
challenge for human health (Yu et al. 2015). Thus, there
is a strong interest in recognizing Zn and Mg as two
economical traits in oyster aquaculture. However, the ge-
netic basis determing the Mg and Zn contents remains
obscure in C. gigas, and no studies have been conducted
to identify the QTL for Zn and Mg contents in C. gigas.

In this study, we developed 480 new polymorphic
SSRs that significantly enriched the resource of SSR
markers for mapping QTLs of C. gigas. QTL regions
related to golden shell color and mineral contents were
located on two linkage maps of the FAM-A and FAM-B
C. gigas families generated in our laboratory. Further,
candidate genes for determing these economic traits
were predicted. Collectively, data from these studies
could facilitate the genetic breeding of C. gigas for
desired economic traits.

Materials and Approaches

Mapping Population

Two F1 full-sib mapping families were developed with golden
and white shell color variants in C. gigas (Fig. 1). The golden
and white shell color variants have been successively selected
for three generations for pure and stable shell color and fast
growth. In May 2012, the FAM-A (white ♀× golden ♂) and
FAM-B (golden ♀× white ♂) families were established by
respective fertilization using eggs and sperms from the white
and golden variants. Spat at 40 days of age were transported to
a growing-out field in Weihai, Shandong province. In July
2013, 108 progeny from FAM-A and 96 progeny from
FAM-B were sampled for analysis, respectively.

Trait Measurement

The growth-related traits including the total weight (TW),
shell weight (SW), shell height (SH), and shell width (Swi)
were evaluated and recorded in all offspring of both FAM-A
and FAM-B families. The normality test was estimated by the
Shapiro–Wilk test of the SPSS 16.0. The color change ΔEwas
calculated as described by Yam and Papadakis (2004) using
the following formula:

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L*−L0*
� �2 þ a*−a0*ð Þ2 þ b*−b0*

� �2
q

L* ¼ L
255

� 100; a* ¼ 240a
255

−120; b* ¼ 240b
255

−120:

Photoshop CS6 was utilized to measure the values of a
(redness) and b (yellowness) color space as well as L (light-
ness). Values of L0, a0, and b0 are used for the completely
golden sample. The inductively coupled plasma-atomic emis-
sion spectrometer (VISTA-MPX, VARIAN, USA) was

Fig. 1 Representatives of two parents of the pacific oyster families with
golden and white shell color used in the study
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utilized to analyze the mineral elements. Mg and Zn contents
were determined according to a method described by Hao et
al. (2015). The result was expressed as mg/100 g dry weight.

SSR Markers

Microsatellite markers (n = 960) were used to test the genetic
segregation in the two mapping families. These include 480
previously published SSR markers and 480 newly developed
SSRs (Table S1). The procedure of developing SSR was done
according to previously described by Li et al. (2009b). All
SSR markers were screened in the four progenies and two
parents initially. The polymorphic markers were genotyped
subsequently in the two mapping families. PCR reactions
were carried out in an ABI Veriti 96 well thermal cycler.
PCR was conducted with a total volume of 10 μl with 0.8 μl
of dNTP (2.5 mmol/l), 1 μl of 10 × reaction buffer, 0.05 μl of
rTaq DNA polymerase (1 U, TaKaRa, Japan), 1 μl of each
primer (2.5 μmol/l each), and 5.15 μl water, containing 1 μl
genomic DNA (about 50 ng). The PCR program was 95 °C
for 5 min and 35 cycles of 95 °C for 30 s, optimal annealing
temperature for 30 s, 72 °C for 0.5 min, and finally 72 °C for
5 min. The PCR products were analyzed on a 6% denaturing
polyacrylamide gel and visualized via silver-staining.

Construction of Genetic Maps and QTL Analysis

The JoinMap4.0 software (Van Ooijen 2006) was used in
constructing a sex-averaged linkage map for each family.
This linkage map was subsequently utilized for QTL analysis.
To obtain linkage groups (LGs) at a LOD threshold of 5.0 in
FAM-A and 7.0 in FAM-B, separated markers were assigned
on clusters. P values less than 0.05 from the interval analysis
permutation test were regarded as indicator of an important
QTL effect. QTL analysis for traits was performed with Map
QTL version 6.0 (Van Ooijen 2009). Interval mapping (IM)
method was employed to detect any significant association
between marks and traits. Graphic representations of the link-
age maps were formed by MapChart 2.2 (Voorrips 2002).

Candidate Gene Identification

To identify candidate genes, all SSR sequences in QTL re-
gions were annotated using the NCBI database (http://www.
ncbi.nlm.nih.gov/) against the sequence of C. gigas.

Quantitative RT-PCR Analysis

Total RNA from each sample was isolated using TRIzol re-
agent (Invitrogen, UK). Each sample was performed with
three duplicates and included the gene EFI (Elongation factor
I) as internal control. RT-qPCR was performed using Light-
Cycler ® 480 SYBRGreen IMaster Kit (Roche, Germany) on

LightCycler 480 real-time PCR instrument. RT-qPCR proce-
dure was as described previously (Feng et al. 2015). The
primers for RT-qPCR were listed in Table S2. The RT-qPCR
data was calculated using the comparative Ct method (ΔΔCt).

Results

Phenotypes

A summary of originally observed phenotypes was listed in
Table S3. Shapiro–Wilk test for the phenotype data indicated
that the distribution of Mg in FAM-A and SH in FAM-B
deviated significantly from the normality (P < 0.05), while
those for the other phenotype data showed normal distribution
(P > 0.05).

Microsatellite Genotyping

Among the 960-screened microsatellite markers, 289 markers
were informative in FAM-A and 338 markers were useful in
FAM-B. Seventy-one shared markers were assigned in both
families.

Individual-Based Linkage Maps

The linkage grouping at LOD= 5was obtained in FAM-A and
LOD = 7 in FAM-B. On the sex-average map of FAM-A, the
number of markers for each LG ranged from 5 to 34 (mean,
21) and covered 1104.8 cm. On the map of FAM-B, the num-
ber of markers for each LG ranged from 2 to 58 (mean, 29)
and covered 1116.9 cm. The percentages of the genome cov-
ered by the two maps were 89.6 and 90.6%, respectively
(Table 1).

QTL Analysis

The QTL of four growth-related characteristics including total
weight (TW), shell weight (SW), shell height(SH), and shell
weight (Swi) were scanned on a genome scale (Table 2). In
FAM-A, four significant QTL (qSHA7-1, qSHA7-2, qTWA5,
and qSWA5), controlling shell height (SH), total weight (TW),
and shell weight (SW), were found on LG5 and LG7
explaining 16.8, 16, 36.7, and 31.3% of the observed respec-
tive phenotypic variations. Interestingly, two QTLs (qTWA5
and qSWA5) associated with total weight and shell weight in
FAM-A were found in the same region near the marker X45
(Fig. 2). In FAM-B, QTL for SW and TW (qTWB4 and
qSWB4) were also mapped to the same location on LG2,
whereas QTL for Swi (qSwiB7) was mapped on LG7 (Fig.
2). No QTL was detected for the shell width in FAM-A and
shell height in FAM-B, respectively.
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In FAM-A, two QTLs were identified on LG3 that were
associated with varied Zn content (qZnA3-1 and qZnA3-2).
These two QTLs might contribute to the phenotypic variance
of 17.9 and 34.4%, separately. No QTL associated with Mg
content could be identified in FAM-A. However, four QTLs
were found to be associated with theMg content in FAM-B on
LG1 (qMgB1), LG2 (qMgB2), LG5 (qMgB5), and LG9
(qMgB9). Among them, qMgB2 showed the largest LOD

(5.31), with 22.9% of the phenotypic variation, and qMgB9
presented the smallest LOD (2.95), which correlated with only
13.5% of the phenotypic variation. Interestingly, both qMgB2
and qMgB9 were also detected for QTL associated with Zn
content (Fig. 2), accounting for 26.7 and 14.2% of the pheno-
typic variation, respectively.

QTLs correlated with shell color were found on LG8 in
FAM-A and on LG10 in FAM-B (qSCA8 and qSCB10). In

Table 2 QTL identified in two families of C. gigas

Family Trait QTL name LG Flanking markers Confidence interval (cm) LOD threshold Maximum LOD PVE (%)

FAM-A SH qSHA7-1 G7 E549-Ceg329 20.7–29.8 3.1 3.6 16.8

qSHA7-2 G7 E367-L70 37.8–38.8 3.7 16

TW qTWA5 G5 X51-Crgi13 89.3–93.6 3.2 5.94 36.7

SW qSWA5 G5 X51-X45 90.3–92.3 3.8 4.88 31.3

Zn qZnA3-1 G3 UCDCG192-UCDCG162 16.2–18.9 3.1 3.93 17.9

qZnA3-2 G3 UCDCG164-E10 33.1–37.4 4.57 34.4

ΔE qSCA8 G8 E523-G221 8–14.2 3.1 3.23 20.2

FAM-B Swi qSwiB7 G7 E53-UCDCG
148

133.7–138.9 3.2 3.6 14.6

TW qTWB4 G4 CGE211-H34 47.3–47.9 3.3 3.67 15.8

SW qSWB4 G4 CGE211-H34 46.3–47.3 3.4 3.57 15.5

Mg qMgB1 G1 E563-G46 52.9–54.9 4.3 4.37 19.3

qMgB2 G2 E531-G118 0–1 4.4 5.31 22.9

qMgB5 G5 G130-UCDCG194 144.6–147.6 3.2 3.52 15.8

qMgB9 G9 CGE32-H153 16.1–17.1 2.8 2.95 13.5

Zn qZnB2 G2 E531-G118 0–3 3.5 6.35 26.7

qZnB9 G9 CGE9-H153 14.1–16.1 2.9 3.13 14.2

ΔE qSCB10 G10 E324-H104 18–26 2.3 2.36 10.5

Table 1 Number of markers and
genetic length for sex-averaged
linkage map in two families of C.
gigas

LG FAM-A FAM-B

No. of
marker

Total length
(cm)

Average
spacing (cm)

No. of
marker

Total length
(cm)

Average
spacing (cm)

1 31 142.9 4.8 58 168.3 2.7

2 34 169.3 5.1 49 147.7 3.2

3 27 96.4 3.7 42 88.8 2.2

4 25 109.3 4.4 30 97.2 3.3

5 25 128.1 5.3 29 161.9 5.8

6 22 114.4 5.4 27 124.8 5.0

7 16 75.7 5.0 24 149.2 6.5

8 15 108.4 7.7 14 86.7 6.7

9 7 119.9 19.99 18 54.3 3.2

10 5 40.3 10.08 2 37.9 37.9

Total/average 207 1104.8 5.6 293 1116.9. 3.9

Genome
coverage

89.6% 90.6%

PVE, phenotypic variance explained
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FAM-A, qSCA8 showed the largest LOD (3.23), illustrating
20.2% of the phenotypic variation. In FAM-B, qSCB10 had

the largest LOD (2.36), contributing to 10.5% of the pheno-
typic variation.
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Fig. 2 Relationship of commercial traits on the linkage groups in two families. Marker names are shown on the left side of each linkage group, and
physical distances are given on the right side
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Candidate Genes of Traits

In total, 35 marker sequences from 17 QTL regions were
annotated. Fourteen genes were recognized in all QTL re-
gions, in which six genes are associated with growth, six
genes with Zn and Mg contents, and two genes on golden
shell color (Table 3). Among the six genes with growth,
FBLN1(fibulin-1-like) and RBP1 (RNA-binding protein 1-
like) were associated with both TW and SW. In addition, the
gene NMT2 (glycylpeptide N-tetradecanoyltransferase 2) was
identified as a candidate gene regulating Zn and Mg contents.

The mRNA Expression of Candidate Genes

Three triplicate samples were collected at day 90 (G1) and 120
(G2) for RT-qPCR analysis of growth-related genes. As
shown in Fig. 3, gene expression of USP15 (ubiquitin
carboxyl-terminal hydrolase 15) and RBP1 was significantly
decreased at day 90 than that at day 120 (P < 0.05; Fig. 3a, b),
while LIG1 (DNA ligase 1-like), FBLN1, ARRB1 (beta-
arrestin-1 isoform X2), and ACTA1 (actin, alpha skeletal mus-
cle) genes showed higher mRNA abundance in the samples at
day 120 (P < 0.05; Fig. 3c–f).

The mRNA expression levels of Mg- and Zn-related genes
were analyzed at two different stages (M1 andM2, Z1 and Z2)
by RT-qPCR, respectively. The Mg content was significant
higher in individuals at M2 (132.9–152.4 mg/g) than that in
M1 (212.1–220.3 mg/g, P < 0.05). Moreover, the Zn content
was significantly higher in individuals at Z2 (271.6–293.6 mg/

g) than that in Z1 (132.9–152.4 mg/g, P < 0.05). All of these
genes linked with Mg and Zn contents showed sufficient
mRNA expression in M1 and Z1, when high Mg or Zn con-
tent was found (P < 0.05; Fig. 3g–m).

The expression levels of color-related genes were deter-
mined by RT-qPCR in three golden shell (C1) and three white
shell color (C2) samples. The PTPPK (receptor-type tyrosine-
protein phosphatase kappa-like) and KMT2D (histone-lysine
N-methyltransferase 2D) genes were mainly expressed in the
golden shell color samples (P < 0.05; Fig. 3n, o).

Discussion

Linkage Mapping

At present, most of the published linkage maps for the Pacific
oyster were established based on AFLP markers (Li and Guo
2004), SSRs (Hubert and Hedgecock 2004; Hubert et al.
2009; Plough and Hedgecock 2011), AFLPs and SSRs (Guo
et al. 2012), SSRs and SNPs (Sauvage et al. 2010; Zhong et al.
2014), and SNPs (Hedgecock et al. 2015). In the study, we
added more SSRmarkers to the linkage maps. Compared with
the linkage map based on the AFLP or SNP markers, the
linkage maps based on the SSR were easy to transfer between
different laboratories. Therefore, it is beneficial to construct
genetic linkage maps based on more SSR markers. As a re-
sults of these collective studies, the average marker interval in
the linkage map were 5.6 and 3.9 cm, which was longer than

Table 3 Candidate genes identified in two families of C. gigas

Family Trait QTL name LG Flanking markers Annotation Gene

FAM-A SH qSHA7-1 G7 E549 Actin, alpha skeletal muscle ACTA1

X82 Ubiquitin carboxyl-terminal hydrolase 15 USP15

CGE329 Beta-arrestin-1 isoform X2 ARRB1

qSHA7-2 G7 L70 DNA ligase 1-like LIG1

TW qTWA5 G5 X45 Fibulin-1-like FBLN1

SW qSWA5 G5 X45 Fibulin-1-like FBLN1

Zn qZn3-2 G3 ucdcg164 Putative per-hexamer repeat protein 5 PHXR5

qAZn3-2 G3 ucdcg199 Aftiphilin isoform X1 AFTPH

ΔE qSCA8 G8 E523 Receptor-type tyrosine-protein phosphatase kappa-like PTPRK

FAM-B TW qTWB4 G4 CGE211 RNA-binding protein 1-like RBP1

SW qSWB4 G4 CGE211 RNA-binding protein 1-like RBP1

Mg qMgB1 G1 E563 Cysteine dioxygenase type 1-like CDO1

G46 Hypothetical protein CGI_10000944/SWI/SNF-related matrix-associated
actin-dependent regulator of chromatin subfamily A-like protein 1

SMARC

qMgB9 G9 H153 Glycylpeptide N-tetradecanoyltransferase 2 NMT2

Zn qZnB9 G9 CGE9 Heat shock protein 68-like HSPA

H153 Glycylpeptide N-tetradecanoyltransferase 2 NMT2

ΔE qSCB10 G10 H104 Histone-lysine N-methyltransferase 2D KMT2D
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some published linkage maps, while smaller than the minimal
size (10–20 cm) for QTL mapping (Massault et al. 2008).
Therefore, our newly established linkage maps are useful for
detecting QTL of beneficial traits in C. gigas.

Mapping Growth Traits

QTLs for principal components of the growth traits have been
reported in C. gigas (Zhong et al. 2014; Guo et al. 2013).
However, the QTL functional regions for single growth trait
were not investigated. In this study, we analyzed the indepen-
dent QTL related to the growth traits in shell formation. The
analysis showed that four QTL of size-related traits were lo-
cated on LG5 and LG7 in FAM-A and LG4 and LG7 in FAM-
B, which accounted for 14.6–36.7% of the phenotypic vari-
ance, respectively. These data suggest that the size-related
traits of C. gigas may be controlled by multiple QTL loci or
regions. This finding was in agreement with a previous report

by Guo et al. (2013) suggesting that the growth traits might be
influenced by many loci with small subtle effects. It is well
accepted that most economic beneficial traits in domestic an-
imals (e.g., growth) were quantitative that were influenced by
numerous genes on different genomic regions (Goddard and
Hayes 2009).

Interestingly, the same QTL for growth was detected for
TWand SW in both families. Multifactorial QTLs for growth
traits have been observed in common carp (Cyprinus carpio
L.), Asian seabass (Lates calcarifer), Atlantic salmon (Salmo
salar), and Zhikong Scallop (Chlamys farreri) (Jin et al. 2012;
Baranski et al. 2010; Xia et al. 2013; Jiao et al. 2014), sug-
gesting that the loci may have pleiotropic effects on the
growth traits. Pleiotropy based on some key factors control-
ling various traits through diverse metabolic pathways might
contribute to multifactorial QTLs (Jin et al. 2012). It is gener-
ally believed that when closely linked markers in multifacto-
rial QTL regions were utilized in MAS, several of the traits

Fig. 3 The mRNA expression
levels of 14 genes examined by
RT-qPCR. Expression levels were
normalized to EF I and presented
as relative expression to controls
(mean ± SD). *P < 0.05; ** P <
0.01
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could get improved at the same time. Hence, the cluster QTL
finding will assist the selective breeding of C. gigas.

The markers related to growth traits were annotated in
genes involved in both physiological process and biochemical
reactions, such as ACTA1, LIG1, and FBLN1. ACTA1 is a
member of the actin family which is highly conserved during
evolution and plays a vital role in cell cytoskeleton organiza-
tion, cell integrity, and motility. LIG1 is critical for DNA rep-
lication, recombination as well as DNA repair. FBLN1 is im-
portant in cell adhesion and cell migration within extracellular
matrix. We showed that different mRNA expression of these
three genes tended to occur at day 120 rather than at day 90.
These results suggest that the three proteins may play key
roles in tissue growth, implying potential important QTL tar-
gets in C. gigas breeding.

Mapping Mineral Element Traits

As essential mineral elements for all living organisms,Mg and
Zn are important to the maintenance of life. QTLs for mineral
contents have been detected in various plants, such as milled
rice, wheat, and maize (Yu et al. 2015; Gong et al. 2016; Jin et
al. 2015). However, no study has been reported on QTL map-
ping for traits of mineral contents in aquatic animals. In FAM-
A, two QTL regions of Zn content were mapped on LG3,
while QTL of Mg content could not be detected. This differs
from the results obtained in FAM-B. The family-specific QTL
could result from fixation of QTL and statistical sampling in
some families (Melchinger et al. 1998). Another factor ac-
counting for different QTL regions could come from the map-
ping parents. During artificial selective breeding, the homozy-
gous QTL allele might be fixed in the mapping parent, where
no segregation could occur. Furthermore, the differences
could be caused by possible false positives, whichmight result
from several factors such as small sample sizes and statistical
power (Mackay et al. 2009).

In FAM-B, it was noted that the two QTLs (qMgB2 and
qMgB9) found for magnesium content had the same location
as the two qZnB2 and qZnB9 involved in zinc content.
Because QTLs involved in Zn and Mg contents were found
on the same region, it indicates that Zn and Mg might share a
common genetic mechanism for cooperative uptake and utili-
zation. Similar result was also reported from the QTL analysis
of Zn and Mg contents in wheat (Gong et al. 2016). This may
be due to the use of same nutrient transporters in transporting
several different mineral elements. In this study, six genes
were identified as being associated with the variation of Zn
and Mg concentration. Among the six genes, NMT2 is signif-
icant because it has been implicated in membrane trafficking
and protein transportation. Moreover, NMT2 showed the high
levels of mRNA expression atM1 and Z1 stages with highMg
or Zn content. Therefore, it is tempting to speculate thatNMT2

might be responsible for Zn and Mg transport and regulation
of their accumulation.

QTL Analysis of Golden Shell Color Polymorphism

In C. gigas, it has been demonstrated that the allele for golden
shell color was dominant over the white shell color (Ge et al.
2015a, b). Similar phenomenon has been observed for the
shell color traits in Pacific lion-paw (Nodipecten subnodosus)
and bay scallop (Argopecten irradians) (Petersen et al. 2012;
Qin et al. 2007). However, some of the colors cannot be ade-
quately explained on the basis of the simple Mendelian mech-
anism. In the noble scallop (Chlamys nobilis), the appearance
of three colors could be explained by a one-locus three-allele
model (Winkler et al. 2001). In Chilean scallop (Argopecten
purpuratus), two loci were identified that determine five color
strains (Zheng et al. 2013).

In FAM-B, we found a QTL for the golden shell color trait
on LG8, located between two SSR loci (E325 and H104).
Interestingly, in FAM-A, H104 was also mapped to LG10,
which contained QTL associated with the golden shell color
trait. In addition, our studies here showed that the golden shell
color QTL in two families could explain 20.2 and 10.5% of
the phenotypic variation. It has been suggested that altering
shell color of Pacific oysters during selective breeding could
be caused by the fixation of major genes, followed by more
sustained and gradual response on polygenes (Evans et al.
2009).

Our studies further demonstrated that the flanking marker
E523 in FAM-Awas located within the PTPRK gene. PTPRK
is a member of the protein tyrosine phosphatase (PTP) family,
which removes phosphate moieties from tyrosine residues on
other proteins. The result of RT-qPCR indicated that PTPPK
was consistently up-regulated in golden C. gigas. Thus,
PTPPK may play an important role in golden coloration in
C. gigas, although it is not clear how PTPPK is involved in
shell color formation. Our data also revealed that the flanking
marker H104 in FAM-Bwas closely linked to the gene coding
for KMT2D, which represents a specific tag for epigenetic
transcriptional activation (www.uniprot.org/uniprot/o14686).
In addition, KMT2D showed a higher mRNA abundance in
golden C. gigas. It has been suggested that KMT2D might be
associated with epigenetic regulation of golden shell color.
Further studies are needed to determine if other loci are
involved in the determination of golden shell color in this
species.

In summary, we have mapped QTLs associated with gold-
en shell color, Mg and Zn contents, and growth traits across
the two linkage mappings. Seventeen QTLs for the above
traits and 14 associated genes were found in these two fami-
lies, which could have potential application for marker-
assisted selection in C. gigas breeding.
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