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The Rho family GTPases are a group of small monomeric G proteins, which are molecular switches in
signaling pathways. They have been known to regulate a diverse range of cellular processes including
actin cytoskeleton rearrangement and microtubule dynamics. In particular, their participations in im-
mune responses are also significant. However, little information of the Rho GTPases is available in teleost
including channel catfish, an economically important species and one of the best teleost models for-
immunological research. In this study, Rho GTPase genes were identified from channel catfish and well
annotated by phylogenetic and syntenic analyses. Their expression profiles were determined in channel
catfish healthy tissues and infected tissues. Altogether seven Rho GTPase genes were significantly
regulated after bacterial infection, with six genes in the gill after Flavobacterium columnare challenge and
two genes in the intestine in response to Edwardsiella ictaluri. All the differentially expressed genes were
up-regulated soon after bacterial infection. Different expression patterns between the two experiments
were observed, which may be attributed to tissue-specific regulation or pathogen-specific regulation.
These results suggested that Rho GTPases play important roles in immune responses to bacterial path-
ogens, setting a foundation for future investigation on Rho GTPases.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Rho GTPases, members of the Ras superfamily of small GTPases,
are relatively small and evolutionarily conserved proteins. They are
distinguished from other small GTPases with the presence of an
insert region in the GTPase domain (Wennerberg and Der, 2004).
Rho GTPases present in all studied eukaryotic organisms (Boureux
et al., 2007), however, their number of genes varies among or-
ganisms. The yeast Saccharomyces cerevisiae has 6 Rho GTPase
genes (Eitzen and Logan, 2012), while mammals contain 20 Rho
GTPases (Heasman and Ridley, 2008). Mammalian Rho family can
be divided into 8 subfamilies: Rho (RhoA, RhoB, and RhoC), Rac
(Rac1, Rac2, Rac3, and RhoG), Cdc42 (Cdc42, RhoJ/TCL, and RhoQ/
TC10), Rnd (Rnd1, Rnd2/RhoN, and Rnd3/RhoE), RhoUV (RhoU/
al., Identification, annotation
s, Developmental and Compa
Wrch and RhoV/Chp), RhoDF (RhoD and RhoF/Rif), RhoH, and
RhoBTB (RhoBTB1 and RhoBTB2) (Burridge andWennerberg, 2004;
Heasman and Ridley, 2008). As important components in signal
transduction pathways, Rho GTPases act as molecular switches
cycling between a GTP-bound state (active) and a GDP-bound state
(inactive). The cycling activity is tightly controlled by three factors:
(a) guanine nucleotide exchange factors (GEFs) which activate the
switch by promoting the exchange of GDP for GTP (Schmidt and
Hall, 2002); (b) GTPase-activating proteins (GAPs) that inactivate
the switch by stimulating the hydrolysis of GTP (Bos et al., 2007);
(c) guanine nucleotide dissociation inhibitors (GDIs) which disso-
ciate the inactive switch from membrane to prevent spontaneous
activation (Jaffe and Hall, 2005; Sadok and Marshall, 2014). In the
active GTP-bound form, Rho proteins interact with downstream
targets (or effectors) to trigger diverse cellular processes: the
regulation of the actin cytoskeleton (Supplementary Table S1) and
microtubule dynamics, and thereby the regulation of a vast array of
processes including morphogenesis, cell polarity, migration, cell
and expression analysis of 29 Rho GTPase genes from channel catfish
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division and adhesion, and vesicular trafficking, as well as gene
transcription regulation (Aspenstr€om et al., 2007; Aspenstrom
et al., 2004; Bokoch, 2005; Burridge and Wennerberg, 2004;
Etienne-Manneville and Hall, 2002; Heasman and Ridley, 2008).
Furthermore, Rho small GTPases have been reported to participate
in cancer metastasis (Li et al., 2014), embryonic development
(Settleman, 1999), and cell wound repair (Verboon and Parkhurst,
2015). Recent studies have shown that Rho GTPases play vital
roles in innate immunity, mostly depending on phagocytic leuko-
cytes, but their roles in immunity are not definitely clear. On the
one hand, leukocytes respond to invading pathogens through
directed migration and phagocytosis regulated by Rho GTPases
(Bokoch, 2005; Chimini and Chavrier, 2000). On the other hand,
Rho GTPases are involved in NADPH oxidase complex assembly and
implicated in regulating the oxidase activity of nicotinamide
adenine dinucleotide phosphate (NADPH) to produce reactive ox-
ygen species to promote bacteria killing (Bokoch, 2005; Bokoch and
Diebold, 2002).

Channel catfish (Ictalurus punctatus) is the predominant aqua-
culture species in the United States. However, due to serious dis-
eases, the catfish industry has been declining in recent years.
Among these disease challenges, two bacterial diseases had the
most severe impact on the catfish industry and caused the largest
economic losses (Wagner et al., 2002). Columnaris disease, caused
by the Gram-negative bacterium Flavobacterium columnare, is a
devastating disease which affects most fresh water fish species
worldwide, particularly in farm-raised aquaculture species such as
channel catfish (Plumb and Hanson, 2011). Enteric septicemia of
catfish (ESC), caused by the Gram-negative bacterium Edwardsiella
ictaluri, is the most prevalent disease widely distributed
throughout the catfish industry worldwide (Hawke et al., 1981).

In order to prevent and control these diseases, enormous efforts
have been made to investigate the molecular mechanisms under-
lying host immune responses to bacteria. However, the roles of
signal transduction factors during disease responses have not been
studied thoroughly. As pivotal components in signaling pathways
during host defense, Rho GTPases remain uncharacterized in
channel catfish. In this study, we aim to identify and annotate the
Rho family genes in channel catfish, and examine their expression
profiles after bacterial infections to provide insight into their roles
in host defense responses.

2. Materials and methods

2.1. Sequence identification and analysis

The Rho GTPase genes were identified from the transcriptome
databases (Li et al., 2012; Liu et al., 2012) and the whole genome
database of channel catfish (Liu et al., 2016). First, the Rho protein
sequences of various vertebrates, including human (Homo sapiens),
mouse (Mus musculus), chicken (Gallus gallus), frog (Xenopus tro-
picalis), zebrafish (Danio rerio), medaka (Oryzias latipes), tilapia
(Oreochromis niloticus), fugu (Takifugu rubripes), and stickleback
(Gasterosteus aculeatus), were retrieved from Ensembl (http://
useast.ensembl.org) and NCBI (http://www.ncbi.nlm.nih.gov).
Then, they were used as query sequences to search against the
transcriptome databases by utilizing TBLASTN program with the
cutoff E-value of e�5. To verify the cDNA sequence, BLASTN program
was performed by aligning with the whole genome sequence with
the cutoff E-value of e�10. Furthermore, ORF finder (http://www.
ncbi.nlm.nih.gov/gorf/gorf.html) and FGENESH (Solovyev et al.,
2006) were used for gene prediction. The predicted amino acid
sequences were further confirmed by searching against NCBI non-
redundant (NR) protein sequence database using BLASTP program.
Simple molecular Architecture Research Tool (SMART, http://smart.
Please cite this article in press as: Tan, S., et al., Identification, annotation
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supported by conserved domain search via BLASTP.
2.2. Phylogenetic and syntenic analysis

To further identify Rho GTPases in channel catfish, phylogenetic
analyses were conducted using amino acid sequences from various
organisms, including human, mouse, chicken, frog, and several
teleost fish species. Multiple sequences were aligned by Clustal
Omega (Sievers et al., 2011), MUSCLE (Edgar, 2004), and MAFFT v7
(Katoh and Standley, 2013) with the L-INS-i, E-INS-i and G-INS-i
strategies. The best-scoring alignment was determined by MUMSA
(Lassmann and Sonnhammer, 2006). The program ProtTest (Darriba
et al., 2011) was used to determine the appropriate evolutionary
model based on Bayesian Information Criterion score. Through the
maximum likelihood method, phylogenetic trees were constructed
by MEGA6 with bootstrap test of 1000 replicates (Tamura et al.,
2013). When molecular evolutionary relationship could not sup-
port the precise gene annotation, syntenic analysis was performed
to provide additional evidence for orthologous relationship. First,
certain genome scaffolds and chromosomes were retrieved by
searching against channel catfish genome database using deduced
Rho amino acid sequences of channel catfish. Second, Rho GTPase
and neighbor genes were identified from the retrieved genome
scaffolds by FGENESH and BLASTP. Then, Genomicus (Louis et al.,
2012) and Ensembl genome database were utilized to obtain the
syntenic regions covering Rho GTPase of human and zebrafish for
the comparison with those of channel catfish.
2.3. Protein structure analysis

I-TASSER Suite 5.0 (Yang et al., 2015) was utilized to conduct
protein three-dimensional (3D) structure prediction with the
amino acid sequences of channel catfish Rho GTPases, and graphical
representations were prepared using PyMol (http://www.pymol.
org). Certain representative Rho protein data of human were ob-
tained from Protein Data Bank (http://www.rcsb.org) and visual-
ized by PyMol in order to compare with those of channel catfish.
2.4. Expression of Rho GTPase genes in healthy tissues

Meta-analysis was conducted to examine the expression pat-
terns among channel catfish healthy tissues (gill, intestine, liver,
skin, barbel, testis, and ovary) using Illumina RNA-Seq datasets
from previous studies (Li et al., 2012; Liu et al., 2016; Sun et al.,
2012; Wang et al., 2013; Zeng et al., 2016). All of these datasets
were downloaded from NCBI Sequence Read Archive (SRA).
Sequencing reads were first quality-evaluated by the popular
FastQC tool (Andrews, 2010). They were then subjected to quality
control with FASTX toolkit (Gordon and Hannon, 2010) to trim
biases in the 50 sequences (Hansen et al., 2010), with Trimmomatic
(Bolger et al., 2014) to trim adaptor sequences and low quality reads
(quality score less than 20 and read length short than 35). More-
over, in order to normalize the sequencing reads abundance and
gene expression among various tissues, we applied the normali-
zation strategy of Sailfish (Patro et al., 2014) with RPKM (reads per
kilobase per million mapped reads) given the normalization com-
parison results reported by Li et al. (2015). In brief, Sailfish imple-
ments an efficient expectation-maximization algorithm for mRNA
abundance estimation normalization and corrects numerous types
of systematic bias in RNA-Seq experiments. RPKMwas further used
to correct for difference in both library size and gene length
(Mortazavi et al., 2008).
and expression analysis of 29 Rho GTPase genes from channel catfish
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2.5. Expression of Rho GTPase genes after bacterial infections

Expression analyses after bacterial infections were conducted
using available RNA-Seq datasets from previous studies of channel
catfish in response to F. columnare infection (Sun et al., 2012) and E.
ictaluri infection (Li et al., 2012). Briefly, the trimmed high quality
reads in RNA-Seq datasets were first mapped onto the channel
catfish reference transcript sequences including Rho gene tran-
scripts using CLC genomics workbench software package. Restric-
tive mapping parameters were set: at least 95% of bases in one read
were mapped to the reference, and a maximum of two mismatches
was allowed. The total number of mapped reads for each transcript
was determined, and then it was normalized to obtain reads per
kilobase of exonmodel per millionmapped reads. The differentially
expressed genes were determined by absolute fold change value �
1.5, the proportion-based Kal's test with P-value < 0.05, and total
mapped reads � 5.

3. Results

3.1. Identification of Rho GTPase genes in channel catfish

A total of 29 Rho GTPase genes were identified from channel
catfish transcriptome databases and confirmed with the channel
catfish genome sequence. The characteristics of these genes,
including cDNA length, 50 and 30 untranslated regions, amino acid
length, predicted RHO domain positions, chromosomes where they
are, and GenBank accession numbers, are summarized in
Supplementary Table S2. RhoD was not identified in channel cat-
fish. Multiple amino acid sequence alignment of human and catfish
Rho GTPases demonstrated conserved regions and common char-
acteristics, including the Rho insert region (Supplementary Fig. S1).

3.2. Phylogenetic and syntenic analysis

Phylogenetic analysis was first conducted to annotate the Rho
GTPase genes in channel catfish. The overall phylogenetic tree
demonstrated Rho GTPases of channel catfish were subdivided into
8 subfamilies (Supplementary Fig. S2), in consistence with previous
studies of the Rho GTPase family (Aspenstr€om et al., 2007; Burridge
and Wennerberg, 2004; Heasman and Ridley, 2008; Ridley, 2006).
To better annotate catfish Rho GTPases, the detailed phylogenetic
analysis for each subfamily was performed subsequently
(Supplementary Figs. S3 and S4). In the detailed phylogenetic
analysis, eight catfish genes (Cdc42l, Cdc42l2, Rac1a, Rac1b, RhoB,
RhoCa, RhoCb, and RhoF) failed to fall into proper clade as expected
to be in the same clade with the genes from zebrafish, which is
most closely related to catfish among the studied organisms. For
instance, the catfish RhoF GTPase gene was placed at the edge of
fish subclade, rather than clustered with its counterpart in zebra-
fish (Supplementary Fig. S4b). Therefore, syntenic analyses were
further conducted for these insufficiently annotated catfish genes,
with conserved syntenic blocks identified for all of them (Fig.1). For
example, the neighboring region of RhoF GTPase gene, setd1b-rhof-
tmem120b, was well conserved among genomes of human,
zebrafish and channel catfish. In summary, combing phylogenetic
and syntenic analyses allowed concrete annotation for catfish Rho
GTPase genes.

3.3. Copy numbers of Rho GTPase genes in channel catfish

Gene copy numbers of the Rho family genes of representative
vertebrates were investigated and summarized in Supplementary
Table S3. The copy numbers of Rho GTPase genes are generally
conserved among mammals, birds, reptiles, and amphibians, while
Please cite this article in press as: Tan, S., et al., Identification, annotation
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different gene copies are found among various fish species. In
channel catfish, eight genes (RhoA, RhoC, RhoG, RhoU, Rac1, Rnd1,
Rnd3, and RhoBTB2) have two copies, and one gene (Cdc42) has
three copies. The duplication of Rho GTPase genes among fish
species may be derived from the teleost-specific whole genome
duplication (Meyer and Van de Peer, 2005). The teleost-specific
genome duplication, however, does not account for all of these
duplicated genes. For instance, the two copies of the gene for RhoA
or Rnd1 are on the same chromosome and relatively far from each
other (data not shown), suggesting that they are intrachromosomal
duplication (Liu et al., 2016). For those Rho GTPase genes with only
a single copy, the duplicated copy after the whole genome dupli-
cation was probably lost (Brunet et al., 2006). It was noted that
RhoDwas not present in channel catfish and the representative ray-
finned fishes. Further investigation showed that RhoD was in tet-
rapods (mammals, birds, and reptiles) and one lobe-finned fish
(Latimeria chalumnae) which was a close relative of tetrapods
(Amemiya et al., 2013). This likely reflected that the RhoD gene was
gained in the sarcopterygian (lobe-finned fishes and tetrapods)
genome during evolution.

3.4. Tertiary structure of channel catfish Rho GTPases

Protein structure comparisons between channel catfish and
human revealed highly conserved tertiary structure of Rho GTPases.
The 3D structures of channel catfish Rho GTPases are very similar
with those of human, especially for the insert region and essential
GTP hydrolysis sites (Supplementary Fig. S5). Tertiary structures of
other channel catfish Rho GTPases are provided in Supplementary
Fig. S6.

3.5. Tissue expression of Rho GTPase genes in healthy channel
catfish

The expression patterns of all the 29 Rho GTPase genes were
determined using existing RNA-Seq datasets from healthy channel
catfish tissues. As shown in Fig. 2A, most Rho GTPase genes were
ubiquitously expressed with tissue- and gene-specific patterns. In
mouse tissues, RhoA, Rac1, and Cdc42 appeared to be the most
ubiquitously expressed and relatively highly expressed Rho family
members (Boureux et al., 2007). In this study, RhoA (RhoAa and
RhoAb), Rac1 (Rac1a and Rac1b), and Cdc42 (Cdc42, Cdc42l1, and
Cdc42l2) were also ubiquitously expressed with a relatively high
expression level, suggesting their basic and important roles in
normal cells. Some genes, such as RhoGd, RhoJ, RhoV, Rnd1, and
Rnd1l, displayed a narrow expression in studied tissues, suggesting
these members evolved toward specific functions (Boureux et al.,
2007).

3.6. Expression analysis of Rho GTPase genes after bacterial
infections

The roles of Rho GTPases in disease responses are not well un-
derstood in fish, and less so with channel catfish. In this study, the
expression profiles of Rho small GTPases were determined from gill
tissues after F. columnare infection, and from intestine tissues after
E. ictaluri infection. In F. columnare challenge, expression analysis
indicated that six genes, including Rac1a, Rac2, RhoGb, Cdc42l,
RhoB, RhoC, were significantly up-regulated at the early stage (4 h
or 24 h) with a modest level of approximately 1.5e2.0 folds
(Fig. 2B). After E. ictaluri infection, RhoC and RhoUb were signifi-
cantly up-regulated with approximately 1.5e3.0 fold changes at
24 h and 3 h, respectively (Fig. 2C). The differential gene expression
patterns suggested their involvements in acute immune responses
against bacterial infections. Three Rho GTPases in the Rac
and expression analysis of 29 Rho GTPase genes from channel catfish
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Fig. 1. Syntenic analyses of channel catfish (A) Cdc42, (B) Rac1, (C) RhoB, (D) RhoC, and (E) RhoF GTPase gene with corresponding genes from human and zebrafish (or Medaka).
Genes with orthologous relationship are aligned vertically. Full gene names are provided in Supplementary Table S6.
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subfamily, including Rac1a, Rac2, and RhoGb, were significantly
regulated after F. columnare infection. Rac1 and Rac2 were reported
to be involved in a variety of cellular processes including adhesion
and migration by cytoskeletal rearrangement (Gu et al., 2003). In
addition, they contributed to the NADPH oxidase complex assembly
and activation to combat with the invading bacteria (Bokoch, 2005;
Bokoch and Diebold, 2002; Dinauer, 2003). In the present study,
Rac1a expression was up-regulated in the gill at 4 h after
F. columnare infection, and continued to be up-regulated at 24 h
when the expression was significantly altered. The up-regulated
expression pattern was consistent with the observations in
studies of other aquaculture species. In grass carp, Rac1 was shown
to be inducible by Aeromonas hydrophila in vivo and in vitro (Hu
et al., 2016); in turbot, the expression level of Rac1 increased
significantly at 8 h and 24 h in liver after challenge with Vibrio
harveyi, suggesting an immunologic function of this Rho family
member (Jia and Zhang, 2009). In this study, Rac2 was found to be
differentially expressed at 24 h after F. columnare infection. Various
studies on zebrafish indicated that Rac2 was important in host
defense. Using the embryonic zebrafish model, Deng et al. (2011)
Please cite this article in press as: Tan, S., et al., Identification, annotation
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reported that Rac2 signaling played an essential part in the regu-
lation of neutrophil mobilization and polarization in vivo.
Furthermore, the role of zebrafish Rac2 was determined by using
Rac2-specific small-molecule inhibition in vitro (Tell et al., 2012).
Similarly, RhoGb was found to be significantly up-regulated in this
study, consistent with the observation in zebrafish. One zebrafish
study showed that RhoGb expression was significantly up-
regulated during Mycobacterium marinum infection, suggesting its
vital roles in immune responses (Salas-Vidal et al., 2005). Cdc42
was well known to have a conserved role in regulating cell shape,
motility, and phagocytosis in many cell types such as neutrophils
(Szczur et al., 2006), monocytes (Weber et al., 1998), and macro-
phages (Hoppe and Swanson, 2004). Chen et al. (1996) reported
that Cdc42 was required for cytoskeletal rearrangement and bac-
terial internalization in monkey kidney cells after the infection of
bacterial pathogen Salmonella typhimurium. Of three Cdc42 copies
(Cdc42, Cdc42l, and Cdc42l2) in channel catfish, only Cdc42l was
significantly up-regulated, suggesting its involvement in immune
responses after bacterial infection. In the channel catfish Rho sub-
family, RhoB and RhoC were significantly altered after F. columnare
and expression analysis of 29 Rho GTPase genes from channel catfish
rative Immunology (2016), http://dx.doi.org/10.1016/j.dci.2016.10.005



Fig. 2. (A) Expression profiles of Rho GTPase genes in healthy channel catfish tissues. Gene expression levels are presented as RPKM after normalization by Sailfish, and the x-axis
shows the names of the studied genes. (B) Differentially expressed Rho GTPase genes in gill tissues of channel catfish after F. columnare infection. Asterisks indicate significant
differences compared to the control (P-value < 0.05). (C) Differentially expressed Rho GTPase genes in intestine tissues of channel catfish after E. ictaluri infection. Asterisks indicate
significant differences compared to the control (P-value < 0.05).
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infection. RhoB was predominantly up-regulated at 4 h post-
infection. This observation was in consistence with the results of
cDNA microarray analysis in human colonic CaCo-2 cells, in which
RhoB was significantly up-regulated after 4 h of treatment with
exotoxin of Clostridium difficile (Gerhard et al., 2005). For RhoC,
extensive studies have been conducted concentrating on its
contribution on promoting metastatic behavior. For instance,
Stoletov et al. (2007) demonstrated that RhoC-induced morpho-
logical change and invasion played an important role during the
early stage of cancer cell metastasis using the zebrafish model. It
has been indicated that RhoC regulated metastasis by controlling
cytoskeleton organization and cell motility (Clark et al., 2000). In
channel catfish, RhoC was the only Rho GTPase gene that showed
significantly up-regulated expressions in both columnaris and ESC
challenges, implying its crucial roles in disease defense responses.
In addition, mRNA expression of RhoUb was statistically significant
after infection with E. ictaluri in this study. In a zebrafish study,
RhoUb was suggested to be implicated in the neural development
and function (Dickover et al., 2014). RhoU, which shared sequence
similarities with Rac and Cdc42, was reported to regulate cell
adhesion and motility (Ory et al., 2007).
Please cite this article in press as: Tan, S., et al., Identification, annotation
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All differentially expressed Rho GTPases in this study were
observed to be up-regulated. The expressions of significantly up-
regulated genes were relatively transient as each of them was
only detected at one time point after infections. All of these
significantly expressed genes were regulated during the first 24 h
post-challenge and then returned to normal levels. This observa-
tion can be explained by the response pattern in innate immune
systems, in which only immediate defense against infection rather
than long-lasting response is provided (Alberts et al., 2002). The
extent of up-regulation was fairly modest, with all genes having
fold changes less than 2 times, and the only exception was RhoUb.
Furthermore, different regulation patterns after bacterial infections
of the two pathogens may be attributed to tissue-specific regula-
tion or pathogen-specific regulation. It is worth noting that not all
significant changes of Rho GTPases definitely result in immune
outcomes. Some changes in the expression of these genes could be
an indirect outcome of the immunological challenges due to the
complex cellular roles of Rho GTPases. Besides, the Rho GTPases
expression can be influenced by pathogenesis, during which bac-
teria intentionally change actin cytoskeleton organization and
achieve entry into non-phagocytic host cells by secreting effector
and expression analysis of 29 Rho GTPase genes from channel catfish
rative Immunology (2016), http://dx.doi.org/10.1016/j.dci.2016.10.005
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proteins (Popoff, 2014).
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