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A B S T R A C T

The swimming performance of fish is crucial for their survival, playing a significant role in enhancing disease 
resistance and facilitating stress recovery, particularly in aquaculture fish. Understanding the genetic basis of fish 
swimming performance is essential for its integration as a key trait in selection breeding programs, especially for 
deeper offshore aquaculture. Spotted sea bass, an economically important aquaculture fish species in China, 
exhibits euryhaline and eurythermic characteristics and has demonstrated substantial potential for deep-sea 
aquaculture. Therefore, in our study, the absolute critical swimming speed (a.Ucrit) of juvenile spotted sea 
bass were assessed, ranging form 24.50 cm s− 1 to 65.00 cm s− 1, and this range enabled the identification of 
individuals with superior and inferior swimming abilities within the test population. Based on whole-genome 
resequencing, genome-wide association studies (GWAS) were conducted for three phenotypes of swimming 
performance, identifying 25 associated SNPs and 85 candidate genes, indicating that it is a polygenetic trait 
influenced by multiple biological processes. The heritability estimates for a.Ucrit and relative critical swimming 
speed (r.Ucrit) were 0.21 ± 0.08 and 0.22 ± 0.08, respectively. Furthermore, the impact of various genomic 
selection (GS) models and SNP densities on prediction accuracy of swimming performance was evaluated using 
genomic prediction (GP). The SVM model is recommended for continuous trait prediction of swimming per
formance, especially when SNP densities ranges between 500 and 50 K, as it provides more accurate, efficient 
and stable predictions. Our research further enhances the understanding of the genetic basis of fish swimming 
performance and holds promise for improving productivity in deep-sea aquaculture through genomic selection.

1. Introduction

China is the world’s largest producer of marine aquaculture, 
contributing 23.96 million tons in 2023. Conventional nearshore 
aquaculture methods, including net cages, rafts, and bottom-seeding, 
account for 66.58 % of the total yield (MOA, 2024). However, the 
expansion of recreational fishing and tourism has increasingly limited 
available nearshore aquaculture spaces, and some farming areas are also 
suffering from water pollution (Mai et al., 2016). These factors signifi
cantly hinder the sustainable development of the marine aquaculture 
industry. In response, China is actively promoting the expansion of 
mariculture from nearshore to deeper offshore environments (Mai, 
2021). Offshore sites present unique challenges, including larger waves 

and complex hydrological conditions, which place higher demands on 
the swimming performance and robustness of farmed animals (Zeng 
et al., 2022). Additionally, suitable species for offshore mariculture in 
Chinese waters are limited, and the risks associated with farming in open 
waters remain poorly understood (Peng et al., 2023). This underscores 
the need to develop and select native species specifically adapted to 
deep-sea mariculture (McKenzie et al., 2021).

Spotted sea bass (Lateolabrax maculatus) is one of the highest- 
yielding economic mariculture fish species in China. Since 2009, 
annual production of spotted sea bass in China has consistently sur
passed 100,000 tons, and in 2023, the annual yield exceeded 240,000 
tons (MOA, 2024), reflecting substantial market demand. Currently, the 
majority of farmed spotted sea bass in China are cultured in traditional 
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ponds and conventional net cages (Wen et al., 2016). In recent years, 
there have been practices trying to cultivate spotted sea bass in offshore 
net cages (Shi et al., 2021), indicating its significant potential for deep- 
sea cage farming.

Swimming performance is a critical mechanism in fish, significantly 
influencing their predation, evasion, and overall fitness (Handelsman 
et al., 2010; Oufiero et al., 2011). Extensive research has been conducted 
globally on various aspects of fish swimming, including speed, behavior, 
and the external factors that influence their capabilities (Cano-Barbacil 
et al., 2020; Katopodis et al., 2019; Shadwick and Goldbogen, 2012). To 
quantify swimming performance, scientists have developed several 
indices, such as burst swimming speed, endurance (Beamish, 1978) and 
gait transition speed (Drucker, 1996). Among these, critical swimming 
speed (Ucrit), also known as maximum aerobic swimming speed, repre
sents the velocity at the threshold between aerobic and anaerobic 
swimming (Brett, 1964). Due to its brief duration and high repeatability, 
Ucrit has been wildly applied in studies of fish swimming performance 
(Norin and Clark, 2016; Pang et al., 2021; Plaut, 2001).

Numerous factors affect fish swimming capabilities, including envi
ronmental variables such as water temperature (Grimmelpont et al., 
2022), dissolved oxygen (Pang et al., 2015), pollutants (Rao et al., 
2022), and salinity(Plaut, 2000), as well as intrinsic morphological 
(Gregory and Wood, 1998) and physiological attributes. Notably, sus
tained aerobic exercise has been shown to enhance fish resilience, 
improving growth performance, immune response (Castro et al., 2013; 
Kolok and Farrell, 1994; McKenzie et al., 2021), and cardiac function 
(Claireaux et al., 2005). Additionally, swimming facilitates the recovery 
of fish from acute stressors, including live transport (Arbeláez-Rojas 
et al., 2017), confinement (McKenzie et al., 2012), and handling (Young 
and Cech, 1993). For example, swimming endurance of Atlantic salmon 
(Salmo salar) has been significantly correlated with disease resistance, 
with faster swimmers exhibiting enhanced immunity (Castro et al., 
2013). Several studies have explored swimming performance as a sub- 
lethal selection tool for traits such as susceptibility, growth rate, feed 
intake, and yield in farmed fish (Kolok, 2001; Palstra et al., 2020). While 
research has indicated that fish swimming performance is a heritable 
trait, with moderate to high heritability estimated across different spe
cies (Garenc et al., 1998; Mengistu et al., 2021), efforts to dissect the 
genetic basis of swimming performance remain in their early stages. 
Furthermore, research regarding the swimming abilities of spotted sea 
bass is limited. Given the crucial role of swimming performance in 
determining fish adaptability and survival, incorporating this trait into 
genetic breeding programs of spotted sea bass has significant 
implications.

To elucidate the genetic basis of swimming performance traits in 
spotted sea bass and to breed strains more suitable for deeper offshore 
farming, genome-wide association studies (GWAS) were employed to 
identify single nucleotide polymorphisms (SNPs) and candidate genes 
related to these traits. Concurrently, genomic prediction (GP) analyses 
were conducted to assess prediction accuracy and determine the optimal 
GS model, along with the most effective SNP density for estimating 
genomic breeding values (GEBVs) related to swimming performance in 
spotted sea bass. This research provides theoretical support for under
standing the genetic basis of swimming performance in spotted sea bass 
and for breeding strains adapted to offshore farming.

2. Materials and methods

2.1. Experimental fish and ethics statement

A total of 770 spotted sea bass juveniles used in this study were 7.33 
± 0.54 cm (mean ± SD) in body length (BL), 5.97 ± 1.33 g in body 
weight (BW), and obtained from Yantai Jinghai Marine Fishery Co., Ltd. 
(Yantai, China). The fish were acclimated at a recirculating water system 
of Ocean University of China (Qingdao, China) for two weeks prior to 
swimming performance test. Water temperature was maintained at 

around 18 ◦C, and water dissolved oxygen saturation was kept >80 % 
with a constant 12 h light/12 h dark cycle. During the acclimation, the 
salinity of water was decreased from 30 ppt to 0 ppt (around 10 ppt per 
day) by adding fresh water. The fish were fed twice a day on commercial 
floating pellet (Xingchang Aquatic technology, China), but were fasted 
for 48 h prior to the test.

All the animal specimens and experimental procedures were 
approved by the Animal Research and Ethics Committees of Ocean 
University of China (Permit Number: 20141201). There were no en
dangered or protected species included in the present study.

2.2. Swim flume and calibration

The swimming performance of fish were tested at a large flow- 
controlled recirculating flume at Fisheries College of Ocean University 
of China, Shandong, China. The test area of the flume measured 4.00 m 
× 1.00 m × 1.20 m, and a stable flow range of 0.2 to 0.7 m s− 1 can be 
provided. To simulate the effect of water flow on fish in a marine 
aquaculture environment, a net cage (1.00 m × 0.50 m × 0.25 m) was 
set up in the flume, and experimental fish are placed in the net cage for 
experimentation (Fig. 1A). To prevent fish from jumping out of the net 
cage, the water depth inside the cage was 15 cm with 10 cm of outlet 
height.

To calibrate the swim tunnel, a flow meter (XIANGRUIDE LS300-A, 
China) was used to take point velocity measurements in 3 points of 
each four cross-sections of swim tunnel (Fig. 1B, C). Based on the cali
bration result, the deference of flow rates among different points within 
the net cage maintained at a low level (± 1 cm s− 1, SD), ensuring that the 
swimming of test fish was not influenced by their distribution in the net 
cage.

2.3. Swimming performance test

A total of 770 spotted sea bass were subjected to swimming perfor
mance tests. Critical swimming speed (Ucrit) were tested to quantify the 
swimming performance of fish by using Ramp-Ucrit test method with 
some adjustments (Farrell, 2008). And before formal experiments, a 
prior practice swim test was performed to obtain a more scientifically 
sound flow rate increment program. Each time, 70 fish were selected 
randomly and introduced into the net cage, and the water velocity in the 
flume was adjusted by changing the engine rotation frequency.

Initially, the water velocity inside the net cage was set at 10 cm s− 1 

(around 1 BL s− 1) and maintained for 30 min to allow the experimental 
fish recover from the stress of being transferred. Subsequently, with 
water velocity increment of 5 cm s− 1 and time steps of 5 min to rapidly 
increase the flow rate inside the net cage to half of the mean absolute 
swimming speed (a.Ucrit) (25 cm s− 1, determined based on the pre
liminary experiment). Then, the water velocity was gradually increased 
in increments of 10 cm s− 1 with time steps of 15 min (as shown in the 
Fig. 1D) until the experimental fish were fatigued. Fatigue was deter
mined when the fish could not swim away from the back net of the cage, 
even when physically stimulated. The exhaustion time was immediately 
recorded, the fish was removed from the net cage, weighed, photo
graphed, and a fin clip was sampled and preserved for DNA extraction. 
The experiment ended when all the experimental fish in the net cage 
reached exhaustion. The a.Ucrit of the experimental fish was calculated 
using the following formula: 

a.Ucrit = U1+(T1/T2)×U2 

where U1 is the highest water velocity that an individual can swim for 
the entire time period, U2 is the water velocity at which an individual 
fatigued, T1 is the time an individual managed to swim at U2, T2 is the 
time increment of U2.

And the relative critical swimming speed (r.Ucrit) was calculated 
using the formula: 
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r.Ucrit = a.Ucrit/BL 

where BL is the body length of the tested fish.
All tests were carried out at a water temperature of around 14 ◦C and 

oxygen content of ≥90 % saturation. After all the swimming tests were 
completed, fish with a.Ucrit ranking top 30 % and last lowest 30 % in the 
test population were further classified as superior swimmers (SS) and 
inferior swimmers (IS), respectively.

2.4. DNA extraction, library construction and sequencing

Caudal fin samples of 446 spotted sea bass (228 SS and 218 IS) were 
used to extract DNA by using TIANamp Marine Animals DNA Kit 
(Tiangen, China). DNA integrity and concentration were assessed based 
on 1 % agarose gel electrophoresis and Qubit Flex Fluorometer (Ther
moFisher, USA). DNA library preparation was performed by using 
VAHTs Universal Plus DNA Library Prep Kit for Illumina (Vazyme, 
China) according to the protocols from manufacturer. Each library was 
sequenced using Illumina NovaSeq X plus platform to generate 150 bp 
pair-end (PE) reads at Novogene Technology Co., Ltd. (Beijing, China).

2.5. Genotyping and quality control

The raw reads were obtained and filtered using SOAPnuke (v2.0) to 
remove the paired reads that contained the adapters, reads that 
possessed N bases (ambiguous bases) > 10 % of the total read length and 
reads with low quality (Q ≤ 5) bases >50 % of the total read length 
(Chen et al., 2017). After the filtering, clean reads were aligned to the 
reference genome of spotted sea bass (JAYMHB000000000) using bwa 
(v0.7.17) with default arguments. The Genome Analysis toolkit (GATK) 
(v4.1.3.0) was used to conduct variants calling and hard filtering (Van 
der Auwera and O’Connor, 2020). For the hard filtering, variants were 

kept with the thresholds set as depth/variant confidence (QD) ≥ 2.0, 
fisher strand (FS) ≤ 60.0, RMS mapping quality (MQ) ≥ 40.0, 
MQRankSum ≥ − 12.5, ReadPosRankSum ≥ − 8.0 and StrandOddsRatio 
(SOR) > 3.0. PLINK (v1.90) was used to perform genotype quality 
control, remove the SNPs with (1) minor allele frequency (− maf) < 0.05; 
(2) SNPs with missing rate (− geno) > 0.02; (3) Hardy-Weinberg equi
librium FDR P-value (− hwe) < 1e-4; and individuals with (4) variant 
missing rate (− mind) > 0.05. After the quality control, the missing ge
notypes were imputed with Beagle (v5.2). The distribution of SNPs in 
different chromosomes of spotted sea bass was visualized by CMplot R 
package.

2.6. Linkage disequilibrium (LD) and population structure analysis

By using the PopLDdecay (v3.42) software, the LD coefficient (r2) 
between two SNPs was calculated and the genome-wide pattern of LD 
decay plot was drawn (Zhang et al., 2019). Principle component analysis 
(PCA) was implemented using PLINK (v1.90) to display the population 
components. The maximum likelihood model of Admixture (v1.3.0) 
software (Alexander et al., 2009) was used to calculate population 
structure, and the K-value (the putative number of genetic group) was 
set to 1–10. Additionally, to get better understanding of the relatedness 
of individuals, a kinship analysis was performed with Tassel (v5.0). The 
PCA plot and kinship heat map were drawn with ggplot2 R package and 
pheatmap, respectively.

2.7. Genome-wide association study (GWAS)

Three phenotypes of swimming performance were used to analyze: 
(1) the absolute critical swimming speed (a.Ucrit); (2) the relative critical 
swimming speed (r.Ucrit); and (3) the binary trait (the SS and IS in
dividuals, recorded as 1 and 2, respectively). GWAS of the a.Ucrit or r. 
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Fig. 1. The swim tunnel and the flow change during swimming performance test. (A) Diagram of the test region of the swim tunnel (blue cube) and the net cage (pink 
area). The dark blue arrow represents the flow direction. (B) Three points (1, 2 and 3) measured for water flow velocity at each cross section inside the net cage, and 
the blue area represents the water height. (C) Diagram of the net cage and four cross sections (red parallelograms a, b, c, and d) for velocity measurement points. (D) 
A schematic representation of the incremental changes in water velocity. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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Ucrit and SNPs were performed using the Linear Mixed Model (LMM) of 
GEMMA (v0.98.5) (Zhou and Stephens, 2012). And GWAS of the binary 
trait and SNPs was performed using logistic model of PLINK (v1.90). The 
calculation model is as follow: 

y = Wα+Xβ+Zμ+ ε 

where y is the swimming performance trait of individuals; W is the 
matrix of covariates (fixed effects), α is vector of corresponding co
efficients including the first three principal components and BL (for r. 
Ucrit and binary trait); X is the matrix of marker genotypes (fixed effect); 
β is the allele substitution effect of each SNP; Z is the genomic kinship 
matrix based on SNPs, μ is the additive genetic effect; and ε is the vector 
of residual errors.

Given that the initially set Bonferroni-corrected significance associ
ation threshold was considered too stringent and prone to false nega
tives, PLINK (v1.90) was used to conduct LD pruning and count the 
number of tag SNPs (N), representative SNPs in the haplotype region of 
the genome. Therefore, 0.05/N and 1/N were set as the final genome- 
wide significance association threshold and the suggestive association 
threshold, respectively. The Manhattan plots and QQ-plots were drawn 
by CMplot package in RStudio. And the phenotypic variance explained 
(PVE) of swimming performance traits was estimated based on the 
GEMMA (v0.98.5) result files and according to the formula mentioned in 
article by Heejung Shim et al. (Shim et al., 2015).

The detailed information of significant associated SNPs were anno
tated by using snpEff (v5.2–0) (Cingolani et al., 2012). The candidate 
genes were scanned ±50 kb surrounding the SNPs in reference genome 
of spotted sea bass using bedtools (v2.31.0), and were ensured by BLAST 
against the non-redundant protein database. Gene Ontology (GO) 
enrichment analysis of the candidate genes was performed by using 
KOBAS website (http://bioinfo.org/kobas/genelist/).

2.8. Genomic prediction (GP)

The narrow-sense heritability (h2) of swimming performance of 
spotted sea bass was estimated using GCTA (v1.94.0). Variance com
ponents were estimated using GREML (genome-based restricted 
maximum likelihood), and the heritability of two traits (a.Ucrit and r. 
Ucrit) were determined using the formula: h2 = σg

2/ (σg
2 + σe

2), where σg
2 is 

the additive genetic variance contributed by all SNPs and σe
2 is the re

sidual variance (Yang et al., 2011).
To assess the feasibility of genomic selection (GS) for improving the 

swimming performance in spotted sea bass, genomic prediction (GP) 
was conducted to evaluate the predictive accuracies of both r.Ucrit and 
binary trait (i.e., IS and SS). To mitigate the multicollinearity of GS 
model caused by adjacent SNPs that highly correlated with each other, 
the tag SNPs were selected for the subsequent GP analyses. The pre
diction accuracies of various SNP panels (10, 25, 50, 75, 100, 200, 500, 
1 K, 5 K, 10 K, 20 K, 50 K, 100 K, and All SNPs) were compared across 
eight GS models. The GS models used herein included six traditional 
models (rrBLUP (Ridge Regression Best Linear Unbiased Prediction), 
BayesA, BayesB, BayesC, Bayesian Lasso (BayesL) and BayesRR 
(Bayesian Ridge Regression)) and two machine learning models (RKHS 
(Reproducing Kernel Hilbert Space) and SVM (Support Vector 
Machine)).

The traditional models could be generalized as: 

y = Xb+Zg+ e 

where y is the vector of phenotypic values; b is the vector of fixed 
effect including the first three principal components; g is the vector of 
additive genetic values (SNPs effect); e is the vector of residual effect; X 
and Z are incidence matrices relating the fixed effect and additive ge
netic values. RKHS and SVM are kernel-based algorithms (Nayeri et al., 
2019). RKHS substitutes the genomic relationship matrix with a general 
kernel matrix, which allows for the assessment of similarities among 

individuals, even in the absence of genetic correlation (González-Recio 
et al., 2014). SVM, initially designed as a classifier, was created to 
separate hyperplanes that maximize the geometric margin, effectively 
ensuring accurate division of a specified training dataset (Howard et al., 
2014).

rrBLUP model was performed using R package rrBLUP (v4.6.3), SVM 
model was performed using R package Kernlab (v0.9–32) (kernel =
“rbfdot”, epsilon = 0.01, C = 1), and the other five Bayesian and RKHS 
models were operated using R package BGLR (v1.1.2) (nIter = the 
number of SNPs (when the number of SNPs ≤ 1000, nIter = 1000), 
burnIn = 1/10 nIter, df0 = 5, and h = 0.1 for RKHS) (Endelman, 2011; 
Karatzoglou et al., 2004; Perez and de los Campos, 2014). 10 % of the 
samples were selected randomly as testing population, while the 
remaining 90 % served as training population and were used for GWAS 
analyses. The SNPs with lowest ranked P-value based on the result of 
GWAS were selected for each SNP panel. The prediction ability of each 
model were represented by two metrics: the Pearson correlation coef
ficient (PCC) between the observed phenotypes and genomic estimated 
breeding value (GEBV) of testing population, and area under the curve 
(AUC) by 30 replicates of ten-fold cross-validation analyses. The data 
was then analyzed using IBM SPSS Statistic (v25) and graphed using R 
studio (v2023.09.1) software, respectively.

3. Results

3.1. The swimming performance of juvenile spotted sea bass

A total of 770 spotted sea bass juveniles were subjected to swimming 
performance tests. The a.Ucrit and r.Ucrit of test population showed 
approximately normal distribution (Fig. 2). The a.Ucrit of juvenile 
spotted sea bass ranged form 24.50 cm s− 1 to 65.00 cm s− 1, averaging 
41.80 ± 7.50 cm s− 1 (mean ± SD). The r.Ucrit of juvenile spotted sea bass 
ranged from 2.95 BL s− 1 to 8.00 BL s− 1, averaging 5.71 ± 0.92 BL s− 1 

(Table 1).
Based on the a.Ucrit, individuals ranking top 30 % were classified as 

the superior swimmers (SS) group, and last lowest 30 % in the test 
population were classified as inferior swimmers (IS) group. Significant 
differences were observed between the IS group and SS groups in terms 
of both a.Ucrit (33.50 ± 4.27 cm s− 1 vs. 50.15 ± 4.08 cm s− 1; t-test, P <
0.0001) and r.Ucrit (4.71 ± 0.69 BL s− 1 vs. 6.57 ± 0.51 BL s− 1; t-test, P <
0.0001) (Fig. 3). In addition, the body length and body weight between 
SS group and IS group differed significantly (t-test, P < 0.0001) (Fig. 3), 
and these were consequently included as covariates for subsequent 
GWAS analyses.

3.2. Genotyping results and marker distribution

A total of 446 caudal fin samples of juvenile spotted sea bass were 
used for DNA extraction, library construction and sequencing, and 11 
samples were discarded due to quality control. After quality control, 
2,124,413 high-quality SNPs were obtained and used for further ana
lyses. Of those, 1,742,824 (61.83 %) SNPs were located in the intergenic 
regions, while 1,129,098 (35.94 %) SNPs were located in gene coding 
sequence. Among the SNPs in coding regions, 124,619 (3.966 %) were 
situated in the exon region, and the ratio of nonsynonymous SNPs to 
synonymous SNPs was 1:1.76 (43,592/76,844). The total physical dis
tance covered by these SNPs was 607.02 Mb, and these SNPs are densely 
and evenly distributed in the genome with the average density of SNP/ 
292 bp (Fig. 4A).

3.3. Population structure and kinship analysis

LD analysis showed a rapid declining trend with squared correlation 
coefficient (r2) between two loci decreased rapidly to 0.1 when the 
distance between each pair of SNPs was around 150 bp (Fig. 4B). To 
assess the population structure of sequenced individuals, principal 
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component analysis (PCA) and kinship matrix were employed. The PCA 
showed that 435 spotted sea bass populations clustered into several 
discrete subgroups, while individuals of the IS and SS groups were 
generally evenly distributed. The PC1 and PC2, explained 38.30 % and 
19.19 % of the total variance, respectively (Fig. 4C). A three- 
dimensional principal component analysis (PCA) plot were also pro
vided in supplementary Fig. S1 to better illustrate the relationships be
tween samples. Additionally, population structure analysis showed that 
the cross-validation (CV) value reached the minimum at a K-value of 9 
(Fig. S2), indicating the optimal number of genetic group for testing 
population (Fig. 4D). The heatmap of kinship relatedness matrix 
demonstrated that the genetic kinship of these individuals was weak, 
due to the most genetic relatedness values were very low (Fig. 5). 
Consequently, the kinship matrix was added to the GWAS model as a 
random effects covariable matrix.

3.4. GWAS of swimming performance traits

Three types of swimming performance trait were analyzed using 

GWAS, including two continuous trait: a.Ucrit and r.Ucrit, and one binary 
trait. A total of 204,235 haplotype blocks for SNPs were identified and 
and its number was used to set thresholds, respectively (genome-wide 
significant P-value = 2.45e-7, suggestive significant P-value = 4.90e-6). 
For a.Ucrit, 5 significant and 31 suggestive SNPs were detected (Fig. 6A). 
For r.Ucrit, 3 significant and 30 suggestive SNPs were found (Fig. 6B). 
And for binary trait, 12 suggestive SNPs were identified (Fig. 6C). By 
selecting the loci detected by more than 2 traits, 25 SNPs were retained 
for further research. Among these SNPs, 7 were predominantly located 
on Chr13, while the remaining SNPs were distributed across Chr1 (5), 
Chr4 (1), Chr7 (4), Chr17 (2), Chr19 (1), Chr20 (1), Chr23 (1) and Chr24 
(3) (Table 2). In addition, these 25 SNPs were identified as significant or 
suggestive SNPs in both GWAS results of a.Ucrit and r.Ucrit (Table 2). Of 
which, the locus 7_13,642,433, 13_9,399,249 and 20_19,316,641 were 
significantly associated with a.Ucrit and r.Ucrit, while loci 1_32,051,080 
and 13_8,265,662 was significantly correlated with a.Ucrit only. Notably, 
loci 24_3,585,432 and 24_3,601,736 were identified as significant or 
suggestive SNPs across three traits, indicating that these two loci were 
important potential candidate SNP markers.

3.5. Identification of candidate genes

Among the 25 SNPs associated with swimming performance, 16 were 
located within gene coding sequences, while the remaining 9 SNPs were 
found in the upstream/downstream (within 5 kb) or intergenic regions. 
By scanning the 50 kb genome sequences surrounding these significant 
SNPs, a total of 85 candidate genes were identified (Table S1). Of which, 
there were 28 candidate genes annotated on Chr 13, including NAD 
kinase b (nadkb), neuronal differentiation 6b (neurod6b),insulin-like 
growth factor-binding protein 1 (igfbp1), pH domain and leucine rich 
repeat protein phosphatase 1 (phlpp1). On Chr 7, 25 candidate genes 
associated with swimming performance were identified, such as 
cardiotrophin-like cytokine factor 1 (clcf1), solute carrier family 43 
member 3b (slc43a3b) and Smoothelin-like (smtn). In addition, the 
following genes were identified on Chr 1: matrix metallopeptidase 2 
(mmp2), lysophosphatidylcholine acyltransferase 2 (lpcat2), solute car
rier family 6 member 2 (slc6a2), stathmin-like 4 (stmn4l), interleukin 
17a (il17a) and membrane progestin receptor beta-like (paqr8l). The 
candidate gene inositol 1,4,5-trisphosphate receptor, type 2 (itpr2) was 
identified near locus 4_16319893. Furthermore, cadherin 6-like (cdh6l) 
was recognized as putative candidate gene around 20_19316641. 
Candidate genes solute carrier family 1 member 1 (slc1a1), RAP1, GTP- 
GDP dissociation stimulator 1 (rap1gds1) were identified around 
23_3068967, while protein kinase X-linked (prkx) and bone morphoge
netic protein receptor 2-like (bmpr2l) were identified in the intron re
gions of loci 24_2770096 and 24_3601736, respectively. The gene names 
and annotations of all these candidate genes were presented in Table S1.

According to GO enrichment analysis, the top 10 GO terms in three 
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Table 1 
Number of fish (N), body length (BL, mean ± SD), body weight (BW), absolute 
critical swimming speed (a.Ucrit) and relative critical swimming speed (r.Ucrit) of 
juveniles of spotted sea bass.

N BL/cm BW/g a.Ucrit/ 
cm⋅s− 1

r.Ucirt/ 
BL⋅s− 1

All Sample 770 7.32 ± 0.56 5.97 ± 1.33 41.80 ± 7.50 5.71 ± 0.92
IS Group 218 7.15 ± 0.53 5.56 ± 1.26 33.50 ± 4.26 4.71 ± 0.69
SS Group 228 7.64 ± 0.50 6.70 ± 1.35 50.15 ± 4.08 6.57 ± 0.51

IS, inferior swimmers; SS superior swimmers.
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speed (a.Ucrit) and relative critical swimming speed (r.Ucrit) of spotted sea bass 
with different swimming performance. SS, superior swimmers group, and IS, 
inferior swimmers group.
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main categories (BP, CC and MF) by P-value showed that these genes 
were primarily enriched in signal transduction, development processes 
and cellular metabolism and function (Fig. 7). Notably, terms such as 
“cAMP-dependent protein kinase activity” and “calcium ion binding” 
may influence muscle contraction and neural signal transmission during 
fish swimming, while terms like “lipid droplet”, and “1-acylglycerol-3- 
phosphate O-acyltransferase activity” may impact the energy supply 
during swimming (Fig. 7). The potential functional mechanisms of these 
candidate genes are further described in the “Discussion” section.

3.6. Genomic prediction of swimming performance traits

The estimated heritabilities of a.Ucrit and r.Ucrit in spotted sea bass 
were 0.21 ± 0.08 and 0.22 ± 0.08 (mean ± S.E.), respectively (Table 3). 
Using PLINK, a total of 204,235 tag SNPs were retained for GP analyses. 
To assess the feasibility of using genomic selection to improve the 
offspring swimming performance, we compared the prediction abilities 
of eight GS models utilizing different SNP panels. In general, the pre
dictive accuracy, assessed through Pearson correlation coefficient 
(PCC), of r.Ucrit using different models increased progressively with the 
number of SNP markers, plateauing around 0.36 at 500 SNPs (Fig. 8A). 
Specifically, for the Bayesian models, the PCC peaked at 10 K–20 K SNPs 
(BayesA, 0.38; BayesB, 0.38; BayesC, 0.38; BayesL, 0.39; and BayesRR, 

0.38), and then decreased as the number of SNPs increased. Similar to 
Bayesian models, the PCC of the rrBLUP and RKHS models reached their 
first peak at 20 K SNPs (0.37 and 0.36, respectively), and then rose to 
their highest values when using the all SNP panel (rrBLUP, 0.38; and 
RKHS, 0.43). The PCC of SVM model exhibited an increasing trend with 
the number of SNPs and reached the highest prediction accuracy of 0.42 
with all SNPs. And it provide relatively higher and more stable predic
tion accuracy when the number of SNPs exceeded 500 compared to 
other models (Fig. 8A).

For the binary trait, the PCC of the eight GS models displayed trends 
similar to those for r.Ucrit, but plateaued around 0.33 at 1 K SNPs 
(Fig. 8C), indicating that more SNPs were necessary for the binary trait 
to achieve comparable prediction accuracy. To assess the classification 
accuracy of each model and trait type, AUC was also calculated. The 
AUC increased with the number of SNPs, following a trend similar to 
that of the PCC, regardless of whether it pertained to the continuous trait 
(r.Ucrit) or the binary trait (Fig. 8B, D). Although the AUC between r.Ucrit 
and binary trait showed no significant difference among different 
models (Fig. S3), a slightly higher PCC for r.Ucrit was observed in the 
comparisons (Fig. S4). In addition, the computational time required by 
each model varied significantly (Fig. S5). The Bayesian models exhibited 
similar computational time requirements, which were considerably 
higher than those for rrBLUP, SVM and RKHS (Fig. S5).
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4. Discussion

4.1. The significant difference of swimming performance among spotted 
sea bass individuals

Ramp-Ucrit tests were conducted to quantify the swimming perfor
mance of spotted sea bass (Farrell, 2008; Jain et al., 1997). Spotted sea 
bass were farmed in groups within cages, regardless of whether they 

were in nearshore or offshore mariculture settings. To simulate the 
conditions of fish farming in cages, a frame cage was constructed and 
placed in a swim flume, employing a group screening strategy with 
around 70 fish for each test. Importantly, as the cross-section area of all 
test fish was smaller than 10 % of the cross-section area of frame cage, 
the influence of the solid block effect on the measurement of Ucrit was 
minimal, and no additional correction was needed (Kern et al., 2018).

The average a.Ucrit of juvenile spotted sea bass was 41.80 ± 7.50 cm 
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s− 1 (mean ± SD), ranging form 24.50 cm s− 1 to 65.00 cm s− 1. Nowa
days, in China, native species including the large yellow croaker (Lar
imichthys crocea), spotted sea bass, golden pompano (Trachinotus ovatus) 
and the black rockfish (Sebastes schlegeli), have increasingly been uti
lized for offshore mariculture (Shi et al., 2021). Although there are 
limited swimming performance measurements available for these 
farmed fish species with comparable body lengths, the swimming per
formance of spotted sea bass is considered relative strong (Jing et al., 
2005; Wang et al., 2010).

The test population was categorized into superior swimmers (SS) and 
inferior swimmers (IS) groups based on a.Ucrit. Previous research in 
other species has reported a positive correlation between body length, 
body weight and swimming performance (Cano-Barbacil et al., 2020; Li 
et al., 2023; Tan et al., 2021). Similarly, the BW and BL of the SS and IS 

groups also showed a positive correlation with a.Ucrit. Therefore, it is 
seemingly possible that selecting for larger body size could lead to 
obtaining individuals with higher swimming performance. However, it 
is important to note that performance is influenced by a variety of fac
tors beyond mere size. For instance, significant differences in swimming 
ability persist even when accounting for size-related factors (as shown 
by the distribution of r.Ucrit in Fig. 2B), reflecting the existence of genetic 
variation (Hanson et al., 2007). Additionally, fish with superior swim
ming performance may also exhibit enhanced disease resistance and 
stress recovery capabilities that are genetically determined (Arbeláez- 
Rojas et al., 2017; Castro et al., 2013). Exclusively selecting for larger 
body size could overlook these important genetic factors that contribute 
to robustness. Furthermore, issues may arise in the breeding process 
when continuously selecting for growth traits, such as degraded 
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underlying cardiac performance (McKenzie et al., 2021). A more effec
tive strategy would be to integrate multiple phenotypic traits in mo
lecular breeding programs to ensure both performance and robustness.

4.2. The genetic basis of swimming performance in spotted sea bass

Despite advancements in understanding fish swimming perfor
mance, the genetic basis for this trait remains largely unexplored. 25 loci 

related to swimming performance traits were obtained through GWAS; 
however, only 5 of them were significant markers that exceeded the 
genome-wide significant threshold of 0.05/N, which may due to the 
relatively small sample size and the polygenetic feature of this trait. A 
total of 85 candidate genes were annotated by scanning the upstream 
and downstream regions of these SNPs. Among the five significant SNPs, 
loci 7_13,642,433, 20_19,316,641 and 24_3,601,736 were located in the 
intronic regions of zinc finger protein 8-like (znf8l), cadherin 6-like 

Table 2 
The summary of identified SNPs and representative candidate genes associated with swimming performance traits.

SNP_ID Chr Position Allele MAF PVE (%) P-value for p1 P-value for p2 P-value for p3 Location Candidate Genes

1_11069355 1 11069355 A/C 0.299 0.0248 6.85E-07 1.07E-06 intron slc6a2
1_11072385 1 11072385 C/A 0.178 0.0213 4.06E-06 2.41E-06 intron
1_16712163 1 16712163 T/A 0.228 0.0210 4.79E-06 3.37E-06 intergenic cdyl2
1_28932685 1 28932685 A/G 0.132 0.0230 1.69E-06 4.09E-06 intergenic
1_32051080 1 32051080 A/G 0.123 0.0279 1.37E-07* 8.68E-07 intergenic stmn4l, il17a
4_16319893 4 16319893 C/A 0.221 0.0254 5.1E-07 1.41E-06 intron itpr2
7_13569992 7 13569992 C/T 0.054 0.0216 3.49E-06 3.76E-06 5’UTR med19a
7_13642433 7 13642433 G/A 0.059 0.0282 1.16E-07* 1.15E-07* intron znf8l
7_14517232 7 14517232 A/T 0.054 0.0249 6.41E-07 1.25E-06 intergenic pcdh2ac
7_21186138 7 21186138 C/T 0.052 0.0247 7.02E-07 1.3E-06 intergenic nrg2b
13_8265662 13 8265662 T/C 0.098 0.0273 1.86E-07 4.99E-07 missense skila
13_9173867 13 9173867 A/G 0.103 0.0222 2.64E-06 2.94E-06 synonymous pde1c
13_9399249 13 9399249 T/C 0.092 0.0294 6.28E-08* 1.79E-07* intergenic vwc2l
13_11658911 13 11658911 C/T 0.103 0.0233 1.45E-06 1.75E-06 intron phlpp1
13_11658913 13 11658913 G/T 0.103 0.0233 1.45E-06 1.75E-06 intron
13_11797268 13 11797268 T/C 0.092 0.0244 8.15E-07 2.01E-06 intergenic igfbp3
13_19862489 13 19862489 A/C 0.106 0.0218 3.14E-06 4.35E-06 intron mmp14
17_9912197 17 9912197 A/G 0.101 0.0249 6.55E-07 1.13E-06 intergenic dlx6a
17_21270002 17 21270002 C/G 0.076 0.0210 4.78E-06 1.02E-06 intron nmda2d
19_5083193 19 5083193 G/A 0.459 0.0238 1.14E-06 1.37E-06 intron
20_19316641 20 19316641 A/C 0.131 0.0305 3.59E-08* 4.86E-08* intron cdh6l
23_3068967 23 3068967 C/G 0.062 0.0230 1.72E-06 3.75E-07 intron rap1gds1
24_2770096 24 2770096 A/G 0.057 0.0214 3.83E-06 2.57E-06 intron prkx
24_3585432 24 3585432 A/C 0.056 0.0240 1.02E-06 2.7E-06 9.12E-07 intron bmpr2l
24_3601736 24 3601736 T/G 0.053 0.0243 8.93E-07* 4.95E-07 9.32E-07 intron

Allele, minor/major allele. PVE, the phenotypic variance explained of r.Ucrit. P-values exceeded the suggestive threshold are showed of each swimming performance 
traits: p1, absolute critical swimming speed (a.Ucrit); p2, relative swimming speed (r.Ucrit); p3, binary trait (the SS and IS individuals, recorded as 1 and 2, respectively). 
*, P-values exceeded the significant threshold. SS (superior swimmers) and IS (inferior swimmers) were classified by a.Ucrit. Upstream and downstream interval size is 
5 kb.
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(cdh6l) and bone morphogenetic protein receptor 2-like (bmpr2l), 
respectively. Znf8l is predicted to act upstream of or within the BMP 
signaling pathway (Jiao et al., 2002), which plays a vital part in the 
skeletal and morphological development of teleosts (Ahi, 2016). This 
suggests that znf8l may be a potential gene influencing fish swimming 
performance. Cdh6l plays a role in maintaining tissue integrity and 
regulating cellular processes such as development, differentiation, and 
morphogenesis (Jia et al., 2011), suggesting that its = may involve in the 
skeletal muscle health of spotted sea bass. Bmpr2l is likely important for 
bone health in spotted sea bass, as mutations in bmpr2 have been asso
ciated with bone-related issues that affect physical performance 
(Sanchez-Duffhues et al., 2020). Furthermore, bmpr2l may influence the 
development of cardiac muscle cells as well (Du et al., 2022), which is 
critical for swimming performance (Claireaux et al., 2005).

In addition, several genes associated with muscle function were 
identified. Inositol 1,4,5-trisphosphate receptor, type 2 (itpr2) could 
regulate the releasing of intracellular calcium (Mei et al., 2021), sug
gesting that it may influence swimming performance by impacting the 
efficiency and speed of muscle contraction. The phosphatase and actin 
regulator gene family can bind to actin and regulate the reorganization 

of the actin cytoskeleton (W. Lin et al., 2022). Thus, phosphatase and 
actin regulator 1 (phactr1) may impact muscle function by regulating the 
actin cytoskeleton in skeletal muscle cells (Squire, 2019). Moreover, 
matrix metallopeptidase 14 (mmp14) was detected near SNP 
13_19,862,489 and may play a crucial role in skeletal muscle repair 
(Snyman and Niesler, 2015). Although individual variation in swimming 
performance has been linked to muscle biochemistry (Kolok, 1992; 
Martinez et al., 2002), swimming performance hierarchies remained 
consistent despite changes in muscle metabolic level, indicating that 
muscle metabolism is not the dominance for individual swimming 
ability (Martinez et al., 2002).

Several genes related to lipid and energy metabolism were also an
notated. Lipid storage in adipose tissue is crucial for energy homeostasis, 
genes such as lysophosphatidylcholine acyltransferase 2 (lpcat2), solute 
carrier family 43 member 1a (slc43a3b), NAD kinase b (nadkb), and 
meprin A (mep1b) have been reported to play roles in lipid metabolism, 
potentially contributing to the maintenance of intracellular lipid bal
ance and energy metabolism (Gooding et al., 2019; Hasbargen et al., 
2020; Y. H. Lin et al., 2024; Xu et al., 2021). Cardiotrophin-like cytokine 
factor 1 (clcf1) signaling has been reported to impair thermogenesis and 
disrupt metabolic homeostasis by inhibiting mitochondrial biogenesis in 
brown adipocytes (M. Ding et al., 2023; Yuan et al., 2024), while RAP1, 
GTP-GDP dissociation stimulator 1 (rap1gds1) regulates mitochondrial 
dynamics by controlling RHOT function to promote mitochondrial 
fission under high calcium conditions (L. G. Ding et al., 2016). These 
findings suggest that these genes may influence fish swimming perfor
mance by modulating mitochondrial activity. The upregulation of PH 
domain and leucine rich repeat protein phosphatase 1 (phlpp1) has been 
associated with obesity and type 2 diabetes due to its interference with 
Akt-mediated insulin signaling (Lupse et al., 2022). Therefore, it is 
anticipated that phlpp4 may affect swimming performance by 

Table 3 
Variance components for two continuous swimming performance traits in 
spotted sea bass.

σg
2 ± S.E. σe

2 ± S.E. h2 ± S.E.

Absolute critical swimming speed (a. 
Ucrit)

15.53 ±
6.58

58.52 ±
6.24

0.21 ±
0.08

Relative critical swimming speed (r. 
Ucrit)

0.24 ± 0.10 0.84 ± 0.09 0.22 ±
0.08

σg
2, additive genetic variance. σe

2,Residual variance. h2,genomic heritability. S.E., 
standard error.

0.0

0.1

0.2

0.3

0.4

10 25 50 75 100 200 500 1k 5k 10k 20k 50k 100k ALL

PC
C

Model
BayesA
BayesB
BayesC
BayesL
BayesRR
RKHS
rrBLUP
SVM

A
U

C

0.0

0.1

0.2

0.3

0.4

10 25 50 75 100 200 500 1k 5k 10k 20k 50k 100k

Number of SNPs

PC
C

0.50

0.55

0.60

0.65

0.70

10 25 50 75 100 200 500 1k 5k 10k 20k 50k 100k

Number of SNPs

A
U

C

A

Model
BayesA
BayesB
BayesC
BayesL
BayesRR
RKHS
rrBLUP
SVM

Model
BayesA
BayesB
BayesC
BayesL
BayesRR
RKHS
rrBLUP
SVM

Binary trait Binary trait 

r.Ucrit
B

C D

0.50

0.55

0.60

0.65

0.70

10 25 50 75 100 200 500 1k 5k 10k 20k 50k 100k ALL

Model
BayesA
BayesB
BayesC
BayesL
BayesRR
RKHS
rrBLUP
SVM

r.Ucrit

Fig. 8. Comparison of prediction accuracies of eight different models for continuous trait and binary trait of swimming performance. (A) and (C) The prediction 
accuracy evaluated by Pearson correlation coefficient (PCC) between the observed phenotypes and GEBV of testing population using different models for relative 
swimming speed (r.Ucrit) and binary trait (i.e., IS and SS), respectively. (B) and (D) The AUC (area under the curve) using different models for r.Ucrit and binary trait, 
respectively.

H. Li et al.                                                                                                                                                                                                                                        



Aquaculture 598 (2025) 741962

11

participating in glucose and lipid metabolism.
Genes associated with the nervous system were also annotated: 

distal-less homeobox 6a (dlx6a), neuronal differentiation 6b (neurod6b), 
von Willebrand factor C domain containing 2-like (vwc2l), stathmin-like 
4 (stmn4l), membrane progestin receptor beta-like (paqr8l), and ade
nylate cyclase type 1-like (adcy1l) are involved in the development and 
maintenance of the nervous system (Cobos et al., 2005; Kasubuchi et al., 
2017; M. J. Lin and Lee, 2016; Miwa et al., 2009; Tutukova et al., 2021; 
Xia et al., 1993), which is vital for motor abilities. Additionally, solute 
carrier family 1 member 1 (slc1a1) is involved in the uptake of gluta
mate, a major excitatory neurotransmitters in the central nervous system 
(Bailey et al., 2011). Solute carrier family 6 member 2 (slc6a2) is 
responsible for the reuptake of extracellular norepinephrine (NE) into 
presynaptic nerve terminals, and a rare variant of slc6a2 has been 
strongly associated with elite athletic performance (Fichna et al., 2021; 
Guilherme et al., 2019). Therefore, we hypothesize that slc6a2 could 
also play a significant role in individual swimming performance in fish. 
Moreover, neuregulin 2b (nrg2b) has been shown to promote neuronal 
survival and neurite extension in rats (Nakano et al., 2016), suggesting a 
role in controlling fish locomotion. Glutamate receptor ionotropic 
(nmda2d) plays an important role in long-term adaptive and regulatory 
processes in the brain (Hallett and Standaert, 2004), which may aid fish 
in adjusting their swimming strategies.

Previous research has shown that fish with superior swimming per
formance tend to exhibit higher cardiac power output than poor swim
mers (Claireaux et al., 2005). In this study, several genes (desmoplakin a 
(dspa), smoothelin-like (smtn) and phosphodiesterase 1C (pde1c)) 
related to the structure and formation of cardiac muscle and vascular 
smooth muscle cells were detected, which may influence the cardiac 
function in fish (Boyer et al., 2010; Satoh et al., 2015; Tian et al., 2019). 
Additionally, several genes were found to affect swimming performance 
through multiple mechanisms: protein kinase X-linked (prkx) could 
affect blood maturation and neural development (Huang et al., 2016), 
while insulin-like growth factor-binding protein 1 (igfbp1) and insulin- 
like growth factor-binding protein 3 (igfbp3) may elevate the blood 
glucose levels and influence the biosynthesis of muscle protein (Lang 
et al., 2003; Lewitt et al., 1991). Matrix metallopeptidase 2 (mmp2) is 
primarily involved in the regulation of stem cell activity that give rise to 
new granule neurons (Sîrbulescu et al., 2015), and inhibiting mmp2 can 
also impact fin regeneration in teleosts, which is a key factor in swim
ming ability (Rajaram et al., 2016).

Moreover, previous studies have shown that fish with enhanced 
swimming performance tend to exhibit improved disease resistance 
(Castro et al., 2011; Castro et al., 2013; Zeng et al., 2023). In line with 
this, several genes related to disease resistance were also identified: 
interleukin 17a (il17a), zinc finger DHHC-type palmitoyltransferase 5b 
(zdhhc5b) and receptor-interacting protein kinase 1 (ripk1l) play signif
icant roles in various immune and inflammatory responses, and are 
crucial to the host’s defense against numerous pathogens (Cho et al., 
2009; Iwakura et al., 2008; Lu et al., 2019). These findings further 
support the correlation between swimming performance and overall 
robustness.

Based on the current results, we believed that the swimming per
formance of spotted sea bass was a complex trait, the clarification of 
genetic architecture of which could be a long and difficult process. 
Additionally, the candidate genes annotated herein require further 
investigation to elucidate their roles related to swimming performance 
of fish. Therefore, more studies are needed to improve the results of the 
present study.

4.3. The GP for swimming performance in spotted sea bass

The heritability estimates of a.Ucrit and r.Ucrit of spotted sea bass 
were 0.21 ± 0.08 and 0.22 ± 0.08, respectively, indicating that the 
swimming performance of spotted sea bass is a heritable trait. Similarly, 
studies on other fish species have identified swimming performance to 

have moderate to high heritability. For example, the heritability of 
swimming performance was estimated in Nile tilapia (Oreochromis 
niloticus) (a.Ucrit: 0.48 ± 0.17, r.Ucrit: 0.15 ± 0.13) (Mengistu et al., 
2021), threespine stickleback (Gasterosteus aculeatus) (absolute and 
relative burst swimming speed: 0.41 and 0.37, respectively) (Garenc 
et al., 1998), guppy (Poecilia reticulata) (a.Ucrit: 0.25 ± 0.15) (Nicoletto, 
1995), large yellow croaker (a.Ucrit: 0.26 ± 0.05, r.Ucrit: 0.22 ± 0.09) 
(Zeng et al., 2022) and European sea bass (Dicentrarchus labrax) 
(maximum burst swimming speed: 0.55 ± 0.08) (Vandeputte et al., 
2016). Given that the estimates were derived from SNP analyses, we 
anticipated that the heritability calculated through family studies on 
swimming performance in spotted sea bass may yield higher values 
(López-Cortegano and Caballero, 2019; Manolio et al., 2009). Overall, 
these results suggested that the feasibility of artificial selection for 
swimming performance traits in spotted sea bass.

It takes 3–4 years for spotted sea bass to reach sexual maturity (Liu 
et al., 2020), making the selective breeding of this species a time- 
consuming and costly endeavor. Consequently, the development of 
molecular breeding could facilitate the promotion of germplasm of 
spotted sea bass by reducing the time and effort investments of breeding 
programs (Fugeray-Scarbel et al., 2021). The evaluation cost and pre
diction accuracy are somewhat interconnected, as higher spending on 
the evaluation could improve the accuracy (Fugeray-Scarbel et al., 
2021). Despite the current decrease in high-throughput sequencing 
costs, it remains a significant impediment to the implementation of GS in 
aquacultural breeding programs (Song and Hu, 2022; Zhang et al., 
2023).

To our knowledge, this is the first study to assess genomic predictions 
for swimming performance traits in spotted sea bass. The accuracy of GP 
could be influenced by heritability, linkage disequilibrium, population 
size, genetic architecture of the traits and other factors (Morgante et al., 
2018). Therefore, it’s essential to compare the performance of different 
models when analyzing new traits in a species (Barria et al., 2021). In 
the present study, SNP markers were selected based on the GWAS result 
to improve the prediction accuracy of GP (Jeong et al., 2020; Nani et al., 
2019). PCC and AUC were used to quantify the prediction ability of GP. 
PCC represents the correlation coefficient between the observed phe
notypes and GEBV of testing population (Bian and Holland, 2017; K. Q. 
Wang et al., 2022), while AUC is a matric that measures how well a 
model can distinguish positive and negative actuals (Simundic, 2009; K. 
Q. Wang et al., 2022). Therefore, by using AUC, we could assess which 
model is more suitable for distinguishing the superior swimmers (SS) 
from the breeding population. We compared the prediction accuracies of 
GS models using different SNP densities. With the increasing density of 
SNPs, the PCC and AUC of different models rose gradually, indicating 
that sufficient density of SNPs is crucial to the accuracy of prediction 
(Barria et al., 2021; Yoshida et al., 2019). For the continuous trait of 
swimming performance, a stable predictive ability (PCC: 0.36, and AUC: 
0.67) could be achieved when the number of SNPs reached 500 for all 
models. In contrast, for the binary trait, a stable prediction ability (PCC: 
0.33, and AUC: 0.68) could be gained when the number of SNP markers 
reached 1000, indicating that predictions for continuous trait could 
provide more accurate results with a lower SNP density compared to 
those for binary trait.

The prediction abilities of different models for the binary trait of 
swimming performance were compared in large yellow croaker, and the 
prediction accuracies estimated by PCC were nearly the same between 
GBLUP (0.21 ± 0.08) and BayesB (0.21 ± 0.06) (Zeng et al., 2023). 
Similarly, the prediction ability among eight various models (rrBLUP, 
BayesA, BayesB, BayesC, BayesRR, BayesL, RKHS and SVM) resembled 
in trends with the change of SNP number. However, though the AUC 
between continuous trait (r.Ucrit) and binary trait showed no significant 
difference, a slightly higher PCC was observed when using r.Ucrit. This 
indicated that using r.Ucrit in GP could provide a higher prediction ac
curacy. Moreover, the comparison of computational time among each 
model showed that rrBLUP and SVM performed better than other 
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models, indicating these two models have better prediction efficiency 
for swimming performance. Notably, SVM showed slightly higher PCC 
than rrBLUP at low density (500-50 K) of markers. In general, when 
using relatively low SNP density (500-50 K) to estimate the continuous 
trait of swimming ability of individuals, we recommend using SVM to 
calculate GEBV in terms of prediction accuracy and efficiency.

5. Conclusion

Our results demonstrated clear individual differences of swimming 
performance among spotted sea bass. Through testing the critical 
swimming speed, individuals in the test population were classified as IS 
and SS. To investigate the genetic basis of swimming performance, 
GWAS were conducted for swimming performance of spotted sea bass. A 
total of 85 candidate genes associated with swimming performance were 
identified near 25 associated SNPs. GO enrichment analysis indicated 
that these candidate genes may directly or indirectly regulate swimming 
performance through multiple biological processes. And the heritability 
estimates of a.Ucrit and r.Ucrit were moderate (0.21 ± 0.08 and 0.22 ±
0.08, respectively). Additionally, GP was performed to compare the 
prediction accuracy of traditional and machine learning models under 
different SNP densities. The continuous trait and SVM model were rec
ommended for calculating GEBV, and the suggestive SNP density for 
prediction was 500. This study established a foundation for further 
investigation into the genetic mechanisms of swimming performance 
and provide theoretical support for future selection breeding of new 
strains of spotted sea bass suited for deeper offshore aquaculture.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aquaculture.2024.741962.
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