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A B S T R A C T

Spotted sea bass (Lateolabrax maculatus), widely farming in the China’s coastal area, is a valuable fish species for 
aquaculture. Nevertheless, fluctuations in water temperature, particularly the significant increases during 
summer, threaten the survival and productivity of this species. Enhancing the heat tolerance of spotted sea bass is 
critical for ensuring the sustainable development of its aquaculture. In the present study, we undertook a 
genome-wide association study (GWAS) to explore the genetic basis underpinnings of heat tolerance in spotted 
sea bass. As shown in the results, 50 significantly associated genetic variants (31 SNPs and 19 InDels) were 
detected, distributed across multiple chromosomes, indicating that heat tolerance trait of spotted sea bass is 
governed by micro-effective multigene. Additionally, 236 candidate genes were also annotated, and hspa5, 
mrpl13 and ndufs8a were identified as hub genes by PPI analysis. GO and pathway enrichment analyses indicated 
that membrane category and membrane trafficking pathway play a major role in the heat stress response. 
Furthermore, comparative evaluation of ten various genomic selection (GS) models and two selection strategies 
(GWAS-p and Random) revealed that the rrBLUP and SVM are optimal GS models for SNP and InDel markers, 
respectively. Overall, our findings deepen the knowledge of the molecular mechanisms of heat tolerance and 
highlights the potential of GS to boost heat tolerance performance in spotted sea bass and related species.

1. Introduction

Aquaculture is an emerging and vital industry that plays a crucial 
role in supplying animal protein and helping to bridge the existing gap 
between global demand and supply for essential proteins (Kobayashi 
et al., 2015). Since the early twenty-first century, global demand for 
‘blue foods’ (aquatic foods) has nearly doubled (Naylor et al., 2021). 
However, the growing impacts of temperature fluctuations threaten 
aquaculture production significantly (Udayantha et al., 2023; Vermeer 
and Rahmstorf, 2009). Temperature is a fundamental and pivotal for fish 
among environmental factors, affecting various biological processes. 
Elevated environmental temperatures can lead to heat-induced shock, 
hypoxia, irreversible physiological injury, metabolic inhibition and in
ternal energy imbalances in aquatic organisms (Chen et al., 2016; Rebl 
et al., 2013). Consequently, developing aquaculture traits related to 

thermal tolerance is critical to overcoming these challenges and 
ensuring the long-term sustainability of the aquaculture.

Recently, numerous studies have concentrated on uncovering the 
potential regulatory mechanisms involved in fish response to high- 
temperature stress, including immune (Zhou et al., 2021a, 2021b), 
antioxidant system (Forgati et al., 2017), behavioral (Corey et al., 2020), 
metabolic responses (Yang et al., 2020a, 2020b) and physiological (Jia 
et al., 2020). For instance, a study shown that adaptive and innate im
mune system activity were disrupted when exposed to simulated heat
waves in three-spined sticklebacks (Gasterosteus aculeatus) (Dittmar 
et al., 2014), while elevated temperature stress has been linked to his
tological structure damage and oxidative stress in pikeperch (Sander 
lucioperca) (Wang et al., 2019). In addition, HSP70, UBI and CDKN1B 
genes have been identified as regulator to thermal acclimation and 
response in goby fish (Gillichthys mirabilis) (Logan and Somero, 2011). 
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These studies demonstrate that fish responses to thermal stress are 
multidimensional, with potential for adaptation to temperature fluctu
ations. However, there has been limited research on the genetic basis of 
thermal tolerance and its pragmatic applications for breeding heat- 
tolerant fish strains.

With the rapid advancements in genomic technology and genetic 
breeding research, the combination of genome-wide association study 
(GWAS) and genomic selection (GS) has emerged as a valid tool for the 
genetic enhancement of economical traits (D’Agaro et al., 2021; Fraslin 
et al., 2022). As an effective approach for associating biological phe
notypes with genetics and elucidating the molecular mechanisms un
derlying target phenotypes, GWAS is widely applied to identify genes 
involved in multigenic traits for aquatic animals (Korte and Farlow, 
2013), such as disease (Holborn et al., 2018), hypoxia (San et al., 2021), 
body shape (Kong et al., 2020), body color (Tang et al., 2023), growth 
traits (Yu et al., 2024) and sex determination (Gabián et al., 2019). 
Several GWAS investigations have uncovered a number of genetic var
iants linked to heat tolerance in fish. For instance, a GWAS study using 
the SNP array identified three SNPs significantly related to heat stress in 
catfish (Ictalurus furcatus), revealing 14 genes, including TRAF2, PRPF4, 
DNAJC25, SLC25A46 and PLCB1 (Jin et al., 2017). Nine SNPs significant 
related to heat tolerance were identified and four candidate genes pre
dicted with the function of respiration, ion channels or obesity in 
northern pike (Esox Lucius) (Jiang et al., 2022). Additionally, GWAS 
studies on heat tolerance have been described in a variety of economic 
fish species, including large yellow croaker (Larimichthys crocea) and 
rainbow trout (Oncorhynchus mykiss) (Wu et al., 2021; Yoshida and 
Yáñez, 2022). GS, which is based on genome-wide association of vari
ants to perform molecular marker-assisted selection (MAS) (Meuwissen 
et al., 2013), enables the assessment of breeding values through esti
mation of the effect of high-density markers (such as SNP or InDel) that 
cover the whole genome. Compared to traditional selective breeding 
techniques, GS possesses obvious advantages, including shorter 
breeding cycles and enhanced predictive performance, particularly for 
traits with low heritability and limited measurability (Xu et al., 2021). 
Successful applications of GS have been achieved in various fish 
breeding programs, including yellow drum (Nibea albiflora) (Liu et al., 
2019), Atlantic salmon (Salmo salar) (Robledo et al., 2018), rock bream 
(Oplegnathus fasciatus) (Gong et al., 2022), Nile tilapia (Oreochromis 
niloticus) (Yoshida et al., 2019), large yellow croaker (Ke et al., 2022), 
hybrid red tilapia (O. spp.) (Sukhavachana et al., 2020) and European 
sea bass (Dicentrarchus labrax) (Vela-Avitúa et al., 2022), yielding sub
stantial economic benefits. However, GS programs for these fish species 
have predominantly targeted growth or disease resistance traits, with 
limited investigation of high-temperature tolerance.

Spotted sea bass is extensively farmed along the Chinese coasts due 
to its enormous economic value (Zhang et al., 2023). However, this in
dustry faces challenges from high summer temperatures. Exploring the 
genetic basis is essential to develop thermotolerant strains to improve 
the survivability for spotted sea bass under high temperatures. This 
study aimed to explore the genetic basis underpinnings of heat tolerance 
trait and assess the potential for GS in the future. To achieve this, we 
conducted a GWAS to identify the variants (SNPs and InDels) and 
candidate genes associated with heat tolerance based on a heating 
experiment. Subsequently, the predictive performance of distinct 
marker densities and GS models was evaluated for heat tolerance trait. 
Finally, the predictive performance of GS model using two different 
variants selection strategies was compared to determine the optimal GS 
breeding model for heat tolerance. Our findings enhance the compre
hension of the genetic basis of thermal tolerance in spotted sea bass, and 
provide a solid groundwork for cultivating thermotolerant strains.

2. Materials and methods

2.1. Ethics statement

In this research, sample collection methods were designed according 
to the Guidelines for the Care and Use of Laboratory Animals in China, 
and agreed by the respective Animal Research and Ethics Committees of 
Ocean University of China (Permit Number: 20141201).

2.2. Heat treatment and sampling

In this study, cultured fish individuals of spotted sea bass sourced 
from Yantai Jinghai Marine Fisheries Co., Ltd. (Yantai, China), were 
used for heat stress experiments. The normal breeding conditions 
maintained at temperature of 22 ± 1 ◦C, salinity of 26.5 and dissolved 
oxygen level greater than 7.0 mg/ L. 500 healthy fish were randomly 
selected into five circular water circulation tanks for heat stress exper
iments. Fish were not fed during the entire thermal treatment period. A 
temperature control machine was run to precisely regulate the water 
temperature with an average heating rate of 1 ◦C / h until reaching 
35 ◦C. Then, 35 ± 0.5 ◦C was set as stress temperature for 72 h due to the 
irreversible damage to fish caused by long-term high temperature. The 
reactions of the fish were meticulously monitored in the course of the 
heat treatment. The corresponding thermal tolerance time was recorded 
as phenotypic data whenever a fish loss of equilibrium (LOE) and failed 
to return to its normal posture within 10 s. The earlier the spotted sea 
bass exhibited LOE, the more sensitive to high temperature. After 72 h 
heat challenge, the phenotypic data of non-LOE fish individuals were 
recorded as 72 h. The pectoral fins of fish individuals were collected to 
extracted genomic DNA after anaesthetized by MS-222 (200 mg/L). 
Finally, 493 fish (body length: 25.96 ± 1.41 cm, body weight: 195.87 ±
32.98 g) were sampled during thermal challenge.

2.3. DNA isolation and sequencing

We isolated the genomic DNA from 493 individuals using commer
cially available kits. After measuring quantity and quality by a nucleic 
acid analyzer (OSTC, China), high-quality genomic DNA was stored at 
− 20 ◦C for subsequent library construction. Library preparation was 
conducted using NEBNext® UltraTM DNA Library Prep Kit (NEB, USA). 
After library quality control, paired-end libraries with a 350 bp insertion 
length were prepared. Then, DNA library was sequenced on the 
DNBSEQ-T7 platform to produce paired-end 150 bp reads.

2.4. Genotyping and filtering

The raw sequencing data was quality assayed and filtered using fastp 
software (version 0.23.4) (Chen et al., 2018) to discard adapter con
taminations and low-quality reads. After filtering, clean reads were 
generated and mapped to the genome sequence of spotted sea bass 
(PRJNA1045806) using BWA software (version 0.7.17) (Li, 2013). 
Variant calling was analyzed to obtain SNP and InDel (Insertion and 
deletion) variants using GATK (version 4.5.0.0) (McKenna et al., 2010). 
For hard filtering of SNPs, the parameters are as follows: QualByDepth 
(QD) < 2.0, FisherStrand (FS) > 60.0, RMSMappingQuality (MQ) <
40.0, ReadPosRankSumTest (ReadPosRankSum) < − 8.0, MappingQua
lityRankSumTest (MQRankSum) < − 12.5 and SOR ≥ 3.0, while for hard 
filtering of InDels, the parameters are as follows: QD < 2.0, MQRankSum 
< − 12.5, FS > 200.0, ReadPosRankSum < − 8.0 and SOR > 10.0. 
Thereafter, the PLINK software (version 1.9) (Purcell et al., 2007) was 
operated to further filter with parameters as follows: (1) missing rate per 
SNP (− -geno) < 0.01, (2) individual variant missing rate (− -mind) >
0.02, (3) minor allele frequency (− -maf) < 0.05, (4) Hardy-Weinberg 
equilibrium (− -hwe) < 0.001. For categorizing the effects of variant, 
the SnpEff software (version 5.0) was performed to annotate variants 
according to the annotated genomic locations of the genome of spotted 
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sea bass (Cingolani et al., 2012).

2.5. Linkage disequilibrium and population structure analyses

The PopLDdecay (version 3.42) was executed to calculated the 
linkage disequilibrium (LD) coefficient (r2) between pairs of variants 
(SNP and InDel markers) for LD analysis (Zhang et al., 2019). Typically, 
the r2 between variants on the genome declines as the marker distance 
increases. Strong correlation and high r2 values are observed when two 
variants are located close to each other. The genome-wide LD decay 
pattern with distance was graphed using Plot_OnePop perl script from 
PopLDdecay software.

To assess the potential genetic relatedness within population, the 
population structure analysis was undertaken. Principal component 
analysis (PCA) of investigated sample was carried out by PLINK, and the 
PC1 and PC2 were plotted to exhibit the population structure. In addi
tion, the Admixture (version 1.3.0) (Alexander et al., 2009) was further 
operated to calculate the population structure. The putative number of 
genetic group (K-value) was set to 1–15, and the optimal theoretical 
subgroup number was represented by the K-value with the smallest 
cross-validation error (CV) value.

2.6. Genome-wide association study

The GWAS analysis was performed with GEMMA (version 0.98.5) 
(Zhou and Stephens, 2012) based on the linear mixed model (LMM). 
Firstly, we obtained the genetic kinship between individuals with the 
parameter: -gk 2. Then, the generated genetic relatedness matrix was 
used for GWAS analysis, and the model was corrected with the results of 
the PCA analysis. The calculation formula is y = Wα + Xβ + Zμ + ε 
(Zhang et al., 2023). On the basis of Bonferroni correction method, the 
threshold was determined as 0.05/N for significant association and 1/N 
for suggestive association, where N is the total number of variants. 
Manhattan and quantile-quantile (Q-Q) plots were plotted using CMplot 
(version 4.5.10) (Yin et al., 2021) to visualize GWAS results. The 
phenotypic variance explained (PVE) value of the variants were calcu
lated based on the published formula (Shim et al., 2015).

2.7. Candidate gene identification, enrichment and expression analysis

To identify genomic regions associated with significant variants 
linked to heat tolerance trait in spotted sea bass, we focused on regions 
positioned in 50 kb upstream and downstream of the relevant variants. 
The information of candidate genes was annotated using the BLAST 
software (version 2.15.0) against the NR, TrEMBL and Swiss-Prot 
datasets. For a deeper understanding of the response mechanisms of 
candidate genes, we performed Gene Ontology (GO) and pathway 
enrichment analyses using KOBAS tool (http://bioinfo.org/kobas) (Bu 
et al., 2021) with a statistical significance threshold of adjusted P <
0.05. Additionally, protein-protein interaction (PPI) network was con
structed by uploading protein sequences of candidate genes to String 
(https://cn.string-db.org/) and identified hub genes using Cytoscape 
software (http://www.cytoscape.org/).

To investigate the expression of candidate genes after thermal exci
tation, liver (PRJNA1140113) and skeletal muscle (PRJNA1071322) 
transcriptome data under heat stress were analyzed. The transcriptome 
data were filtered to remove adaptor and low-quality reads using fastp, 
and then aligned with genome sequence using Hisat2 (version 2.2.1) 
(Kim et al., 2015). The FPKM value was calculated using StringTie 
(version 2.2.1) (Shumate et al., 2022). Based on the standard procedures 
of the DEseq2 software package (version 1.46.0) (Love et al., 2014), 
differential expression analyses were undertaken, |log2FoldChange| ≥ 1 
and adjusted p-value ≤0.05 were set as the significant threshold.

2.8. Validation of the candidate genes

According to the heat tolerance time, fish sampled before heat stress 
(H0) and at 12 h (H12), 24 h (H24), 48 h (H48) and 72 h (H72) after 
temperature reached 35 ◦C were selected for further qPCR. Total RNA 
was isolated from the liver tissues using the Trizol method, and the RNA 
quality were evaluated using Biodropsis BD-1000 spectrophotometric 
absorbance (Beijing Oriental Science & Technology Development Ltd., 
China). Subsequently, RNA was reversed to cDNA as reaction template 
following the instructions (Takara, Japan). Specific primers of six 
candidate genes were listed in Supplementary Table 1, which were 
designed using Primer 5.0. Reference gene was 18S gene, and all sam
ples were tested in three replicates. The 10 μL qPCR reaction mixture 
was prepared with 1 μL of template cDNA, 5 μL of SYBR Premix solution 
(Vazyme, China), 0.5 μL of each prime, and 3.5 μL of nuclease-free 
water. qPCR was performed on the Applied Biosystems 7300 machines 
(Applied Biosystems, USA) under following conditions: initial denatur
ation at 95 ◦C for 3 min, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 
30 s and 72 ◦C for 30 s. with a final extension at 72 ◦C for 5 min. The 
relative expression levels of tested genes were calculated with the 2− ΔΔCt 

method. One-way analysis of variance (ANOVA) was performed, fol
lowed by Duncan’s multiple range test, with statistical significance set at 
P < 0.05.

2.9. Heritability and correlation estimates

To calculate the heritability (h2) of heat tolerance in spotted sea bass, 
the genomic relationship matrix was generated using GCTA (version 
1.94.1) (Yang et al., 2011). The formula for evaluating narrow-sense 

heritability is h2 = σ2
g∕
(

σ2
g + σ2

e

)
, where σ2

g and σ2
e were the additive 

genetic variance and residual difference variance, respectively. More
over, the phenotypic and genetic correlations of heat tolerance with 
growth traits (body length and body weight) were also assessed by 
ggstatsplot (R package, version 0.11.0) and GCTA software, 
respectively.

2.10. Genomic prediction

To evaluate the potential of GS, genomic prediction (GP) was con
ducted to assess the predictive accuracies of heat tolerance trait in 
spotted sea bass. For reducing the computational workload and given 
the strong correlations between neighboring SNPs or InDels in haplotype 
blocks, tagging variants were identified using PLINK software, which 
represent variants within haplotype blocks. Subsequent GP analysis was 
based on tagging variants. A total of ten models were applied for GP, 
including ridge regression BLUP (rrBLUP), five Bayesian models (Bayes 
A, Bayes B, Bayes C, BL: Bayes LASSO and BRR: Bayes ridge regression) 
and four machine learning models (GBM: Gradient-boosting machine, 
RF: random forest, SVM: support vector machine, and RKHS: repro
ducing kernel Hilbert space). The rrBLUP R package (version 4.6.3) 
(Endelman, 2011) was used to perform the rrBLUP prediction, the BGLR 
R package (version 1.1.1) (Pérez-Rodríguez, 2022) was used to calculate 
Bayesian and RKHS models, as well as the gbm R package (version 2.1.9) 
(Jerome, 2001), randomForest R package (version 4.7–1.1) (Breiman, 
2001) and kernlab R package (version 0.9–32) (version 0.9–32) 
(Karatzoglou et al., 2004) were operated GBM, RF and SVM machine 
learning (ML) models, respectively.

By constructing 14 and 12 randomly sampled marker datasets with 
different numbers of SNP and InDel markers, respectively, the predictive 
accuracy of 10 GP models was compared using ten-fold cross-validation 
with five replicates. Briefly, 493 fish were randomly divided into non- 
overlapping sequential training populations (n = 444) and testing 
populations (n = 49) with a 9:1 ratio. The GP model was constructed 
using the training population and subsequently applied to estimate the 
genomic breeding values (GEBVs) for the testing population. Predictive 
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accuracy was defined as the average correlation coefficient between the 
observed phenotypic values and the predicted GEBVs generated from 
the prediction model. Subsequently, the predictive accuracy of 
randomly sampled datasets with five replicates for ten GP models was 
averaged across five replicates to minimize random effects.

For evaluating the effect of marker density on the predictive accu
racy of distinct selection strategies, 12 and 10 marker subsets with 
different density were randomly sampled for SNP and InDel markers, 
respectively. The predictive accuracies were compared using two GS 
strategies as described below: (1) the informative variants selected by 
GWAS on the basis of p-values in ascending order which generated via 
GEMMA software (GWAS-p); (2) the informative variants selected 
randomly from the tagging SNPs or Indels (Random). In order to simu
late the data more realistically, only the same number of fish as in the 
training population (n = 444) were selected for analysis with five rep
lications. As mentioned earlier, the predictive accuracies were validated 
with ten-fold cross-validation.

3. Results

3.1. Phenotypic statistics of heat tolerance trait

LOE time of fish individual was considered as the thermal tolerance 
time from the stress temperature (35 ◦C). As illustrated by the survival 
curves in Supplementary Fig. 1, the first fish individual showing LOE 
was observed at 1.27 h. Subsequently, as the duration of exposure to 
high temperatures increased, fish individuals gradually exhibited LOE. 
Challenged Fish have high inter-individual variation in thermal toler
ance traits, reflected the potential for artificial selection for heat toler
ance in spotted sea bass.

3.2. Genotyping results, marker distribution and annotation

After genotyping and filtering, 3,769,461 SNPs and 644,400 InDels 
were detected among the all individuals using GATK software, and the 
histogram of minor allele frequency (MAF) distribution of SNPs and 
InDels were shown in Fig. 1A. Density map showed that SNPs and InDels 
were uniformly distributed across the 24 chromosomes (Fig. 1B). After 

annotation using SnpEff software, the genome-wide average change rate 
was calculated as 165 bp / SNP and 968 bp / InDel, respectively (Sup
plementary Table 2). Among those variants, 1,769,409 (38.77 %) SNPs 
and 321,698 (40.69 %) InDels were located in the intron region, 
1,768,305 (38.75 %) SNPs and 304,989 (38.58 %) InDels were in the 
intergenic region, 162,496 (3.56 %) SNPs and 4327 (0.55 %) InDels 
were in the exon region, and 742,520 (16.27 %) SNPs and 137,843 
(17.43 %) InDels were positioned in the gene coding region, respectively 
(Table 1).

Fig. 1. The characteristics of detected variants in spotted sea bass. (A) The histogram of minor allele frequency (MAF) distribution. (B) Density and distribution of the 
high-quality SNPs and InDels among 24 chromosomes.

Table 1 
Variation annotation by genomic region, impact, and functional class.

Category Type SNP InDel

Count Percentage 
(%)

Count Percentage 
(%)

Genomic 
region

Downstream 353,260 7.74 67,154 8.49
Exon 162,496 3.56 4327 0.55
Gene 0 0.00 7 0.00
Intergenic 1,768,305 38.75 304,989 38.57
Intron 1,769,409 38.77 321,698 40.69
Splice site 
acceptor 202 0.00 108 0.01

Splice site 
donor

252 0.01 113 0.01

Splice site 
region

21,927 0.48 2980 0.38

Transcript 0 0.00 71 0.01
Upstream 389,260 8.53 70,689 8.94
Utr_3_Prime 74,721 1.64 15,030 1.90
Utr_5_Prime 23,759 0.52 3504 0.44

Impact

High 1076 0.02 2559 0.32
Low 138,866 3.04 2980 0.38
Moderate 48,286 1.06 1990 0.25
Modifier 4,375,363 95.88 783,141 99.05

Function 
class

Missense 48,437 34.94 – –
Nonsense 480 0.35 – –
Silent 89,725 64.72 – –
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3.3. Population structure and LD analyses

As shown in Fig. 2A, the PCA analysis results suggested that there 
were several discrete subgroups, and can be roughly classified into two 
subpopulations. In the analysis of population structure, the CV 
continued to decrease as the value of K increased. The CV value reached 
its minimum when K = 12 (Fig. 2B), which was considered to be the 
theoretically optimal genetic subpopulation number, indicating a com
plex and diverse population structure. Weak genetic relatedness across 
experimental spotted sea bass was observed through the genetic relat
edness matrix (Fig. 2C). Based on the LD analysis, the squared correla
tion coefficient (r2) declined sharply with increasing distance between 
SNPs. The maximum r2 value was 0.44, and quickly decreasing to 0.1 at 

a distance of 600 bp (Fig. 2D). Additionally, population structure anal
ysis using InDel markers was conducted. The PCA results for InDel 
markers showed a similar pattern, revealing two distinct subgroups 
(Supplementary Fig. 2A), which supports the findings from the SNP 
analysis. The CV value for InDel markers also showed a decrease as K 
increased, reaching a minimum at K = 12, further confirming the 
presence of a complex population structure (Supplementary Fig. 2B). 
Similar to the SNP markers, the genetic relatedness matrix for InDel 
markers also indicated weak genetic relationships among the samples 
(Supplementary Fig. 2C). The maximum r2 value was 0.86, and quickly 
decreasing to 0.1 at a distance of 700 bp (Supplementary Fig. 2D).

Fig. 2. (A) PCA plot of experimental fish based on the results of SNP marker analysis. Purple dots denote individuals used in GWAS analysis. (B) Variation of cross- 
validation error at different K values. (C) The heatmap of genetic relatedness among the challenged individuals. Blue indicated low relatedness and red indicated high 
relatedness (D) LD decay plot of SNPs. The Y-axis represents the squared correlation coefficient (r2), the X-axis represents the physical location. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Genome-wide association analysis

3,769,461SNPs and 644,400 InDels from 493 individuals were used 
for GWAS. The suggestive and significant statistical thresholds were set 
as –log10 (1/3769461) = 6.58 and -log10 (0.05/3769461) = 7.88 for SNP 

marker, while the suggestive and significant statistical thresholds were 
–log10 (1/644400) = 5.81 and -log10 (0.05/644400) = 7.11 for InDel 
marker, respectively. As a result, a total of 50 variants (31 SNPs and 19 
InDels) were detected in association with heat tolerance trait of spotted 
sea bass, scattered on 17 chromosomes, including chr 2, 3, 4, 5, 6, 7, 8, 9, 

Fig. 3. GWAS analysis results for heat tolerance trait of spotted sea bass. Manhattan plot for SNP marker (A) and InDel marker (B), respectively. The dotted line of 
Manhattan plot represents the significance threshold. The solid line represents the suggestive threshold. Q-Q plots showed the validity of the GWAS analysis for SNP 
(C) and InDel marker (D), respectively. (E) Venn diagram of candidate genes associated with SNP and InDel variants. (F) Results of PPI analysis of candidate genes. 
(G) Heatmap of the expression of three hub genes in spotted sea bass liver and muscle tissues under thermal stress.
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10, 11, 12, 13, 14, 19, 21, 23 and 24 (Fig. 3A and Fig. 3B). Among those 
variants, three SNPs and InDels were determined as significant corre
lations with heat tolerance trait, respectively, while the remaining var
iants were considered as suggestive correlations. The p-value of 
chr06:18472093 was the smallest among the 31 SNPs (P = 1.94E-09) 
with the PVE value of 7.59 % and minor allele frequency of 0.075. For 
InDels, the p-value of chr11:26014378 was the smallest (P = 6.48E-09) 
with the PVE value of 7.08 % and minor allele frequency of 0.084. 
Furthermore, most of the significant variants were positioned in the 
intron, upstream and intergenic region (account for 94.00 %), with only 
one significant SNP positioned in 3_prime_UTR, downstream and exon 
regions separately (Supplementary Table 3). As a confirmation of the 
reliability and validity of the GWAS analysis, Q-Q plots demonstrated 
that the statistical model was appropriate in this study (Fig. 3C and 
Fig. 3D).

After scanning the upstream and downstream 50 kb genomic regions, 
236 candidate genes were annotated that are potentially related to heat 
tolerance trait in spotted sea bass (Supplementary Table 4). Among 
those genes, 15 candidate genes overlapped between SNP and InDel 
annotation results, 166 and 55 candidate genes were specific for SNP 
and InDel annotation, respectively (Fig. 3E). By constructing PPI 
network, we screened three highly connected candidates as hub genes, 
including hspa5, mrpl13 and ndufs8a (Fig. 3F). The heatmap of three hub 
genes showed the dynamic changes of expression after heat stress 
(Fig. 3G).

3.5. Candidate gene validation and function enrichment analysis

To validate the results, the relative expression levels of six candidate 
genes were detected by qPCR, including ABCA1 (ATP binding cassette 
subfamily aa member 1), CPQ (Carboxypeptidase Q), ANKRD13D 
(Ankyrin repeat domain 13 family, member D), NUCB2 (Nucleobindin 
2), PAT-3 (Integrin) and PNPLA2 (Patatin like phospholipase domain 
containing 2). The ABCA1 and PAT-3 genes were significantly up- 
regulated on H48. However, the ANKRD13D and PNPLA2 genes were 
significantly down-regulated. The CPQ and NUCB2 genes exhibited a 
tendency to be up-regulated (Fig. 4).

Furthermore, the GO and pathway enrichment analyses results 
indicated that the membrane term was significantly enriched, with a 

highest gene number (Supplementary Table 5). In addition, recycling 
endosome, synaptic vesicle, guanyl-nucleotide exchange factor activity 
and small GTPase mediated signal transduction were also significantly 
enriched. Interestingly, in the enriched pathways, membrane traf
ficking, vesicle-mediated transport, RAB GEFs exchange GTP for GDP on 
RABs, Golgi associated vesicle biogenesis, Rab regulation of trafficking, 
trans-Golgi network vesicle budding and Clathrin-mediated endocytosis 
pathways were also found (Supplementary Table 5 and Fig. 5), sug
gesting that membrane trafficking mechanisms are engaged in the mo
lecular response to high ambient temperatures. Several genes involved 
in these pathways were drawn in Fig. 5, and their differential expression 
folds after thermal stress were shown in a heatmap, with asterisks 
denoting the significant differences. Based on enrichment analysis and 
literature search, a putative schematic diagram of the molecular 
mechanisms involved in the response of the spotted sea bass to high 
temperature stress through the membrane trafficking pathway is sum
marized, which illustrates the transport processes and of biochemical 
molecules (Fig. 6).

3.6. Heritability and correlations

Based on high-quality SNPs, heritability estimates of 0.13 ± 0.07 was 
obtained, indicating a low heritability for the heat tolerance trait of 
spotted sea bass (Table 2). Correlation analysis between the heat toler
ance trait and two growth-related traits suggested very weak negative 
phenotypic correlations, with Pearson’s correlation coefficients of 
− 0.22 (p = 7.94e-07) for body length and − 0.03 (p = 0.49) for body 
weight, respectively (Supplementary Fig. 3). Moreover, the genetic 
correlations of thermal tolerance time and body length and body weight 
were also respectively calculated using GCTA software, and the results 
showed weak negative genetic correlations were observed, with a cor
relation of − 0.06 ± 0.31 for body length and − 0.12 ± 0.30 for body 
weight, respectively (Supplementary Table 6).

3.7. Comparison of thermal tolerance time among different genotypes

For the purpose of investigating the superior genotype, the differ
ences of SNPs and InDels significantly associated with heat tolerance 
trait of spotted sea bass were separately analyzed by combining 

Fig. 4. Validation of six candidate genes by qPCR.
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individual thermal tolerance time and genotype data, respectively. 
Significant differences in the thermal tolerance time were observed 
among different genotypes (Fig. 7). For the three significantly associated 
SNPs (chr06:18472093, chr14:5187820 and chr21:4565319), in
dividuals with the GG, AA, and CC genotypes exhibited significantly 
longer thermal tolerance times compared to those with other genotypes 
(Fig. 7A). For the three significantly associated InDels (chr05:25792997, 
chr07:13415682 and chr11:26014378), A/A and TTAA/TTAA were the 
superior genotype (Fig. 7B).

Fig. 5. Enrichment results related to membrane trafficking pathway. The heatmap exhibiting differential expression folds of genes enriched in the pathway in liver 
and muscle tissues after thermal shock.

Fig. 6. Schematic diagram of the putative regulatory mechanism of the spotted sea bass in response to heat stress by membrane trafficking pathway.

Table 2 
Results of the heritability analysis for heat tolerance trait using SNP markers.

Source Variance SE

V(G) 227,112.5071 132,140.7279
V(e) 1,475,235.675 134,438.3908
Vp 1,702,348.183 114,130.2727
V(G)/Vp 0.133411 0.07439

V(G): genetic variance among individuals; V(p): total phenotypic difference. V 
(e): environmental variance contributing to phenotypic differences.
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3.8. Genomic prediction for heat tolerance trait

Based on the results of tagging analysis using PLINK software, 
673,063 tagging SNPs and 104,419 tagging InDels were selected for 
genomic prediction, respectively. To evaluate the predictive accuracy of 
GEBVs, ten GS models were compared with ten-fold cross-validations 
through randomly selection of different numbers of tagging SNPs and 
InDels, respectively. It was revealed that the predictive accuracy of the 
testing populations was not increased with the increase of marker den
sity (Supplementary Table 7 and Supplementary Table 8), rather it 
maintained at a low level. For both SNP and InDel, there are no strictly 
significant differences between the ten models, and one of the models 
may have better prediction accuracy at a specific marker density (Fig. 8). 
For instance, when the number of tagging SNPs was 6400, the highest 
predictive accuracy was observed in the rrBLUP model, while when the 
marker density is increased to 25,600, the BayesA model has the highest 
accuracy (Fig. 8A). Similar results were found in tagging InDel marker 
(Fig. 8B).

According to the results of the comparison of the two selection 
strategies (GWAS-p and Random), the general predictive performance of 
GWAS-p was superior to Random when using the same number of SNPs 
or InDels (Supplementary Table 9 and Supplementary Table 10). For the 
GWAS-p selection strategy, the predictive accuracy tended to increase 
and then decrease gradually with marker density from 10 to All. 
Conversely, for the selection strategy of Random, the predictive accu
racy was consistently maintained at low values with increasing marker 
density, significantly lower than when using GWAS-p selection strategy. 
For SNP marker, the rrBLUP model reached a maximum predictive ac
curacy of 0.7734 ± 0.0260 at a marker density of 10 k, which was the 
highest among all models (Fig. 9A). While for InDel marker, the SVM 
model reached a maximum predictive accuracy of 0.7454 ± 0.0316 only 
at a marker density of 1 k (Fig. 9B). Both for SNP and InDel marker, the 
maximum predictive accuracy of the RF and GBM models was less than 
0.6 (Supplementary Table 9 and Supplementary Table 10).

Fig. 7. Box plot of thermal tolerance time of 493 sequenced samples with different genotypes. (A) Results for three significantly associated SNPs. (B) Results for three 
significantly associated InDels. The Y-axis represents the thermal tolerance time of individuals, and different colors represent different genotypes. The n represents 
the number of individuals with different genotypes. Differences were analyzed using Wilcox and Kruskal tests.
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4. Discussion

Global warming generally causes higher water temperatures, posing 
significant challenges for fish. Acute fluctuations in water temperature 
can induce changes in fish physiological systems and their behaviors 
(Alfonso et al., 2021), exacerbate health problems and increase mor
tality, thereby dramatically impacting fisheries and aquaculture 
worldwide (Islam et al., 2022). Development of heat-tolerant trait 
aquaculture fish using a combination of GWAS and GS is a viable 
strategy to cope with the high-temperature challenge. GWAS has been 
applied for uncovering the genetic variations linked to economic traits 
and identifying candidates that regulate these traits, such as growth 
traits of brown-marbled grouper (Epinephelus fuscoguttatus) (Yang et al., 
2020a, 2020b), head size of bighead carp (Hypophthalmichthys nobilis) 
(Zhou et al., 2021a, 2021b), disease resistance and black color traits of 
leopard coral grouper (Plectropomus leopardus) (Tang et al., 2023). In 
this research, we performed a GWAS to investigate the molecular 
mechanisms of heat tolerance and assessed the GP potential of devel
opment of molecular breeding markers in spotted sea bass.

From the GWAS results, 50 significant variants (31 SNPs and 19 

InDels) were distributed across 17 chromosomes, indicating that heat 
tolerance trait in spotted sea bass are regulated by micro-efficient 
multiple genetic loci. During thermal stress, denatured proteins can 
form aggregates that are toxic to cells. Therefore, the degradation and 
elimination of misfolded proteins and damaged biomolecules are 
essential for fish to effectively respond to thermal stress (Kumar et al., 
2022). There is widespread transcriptional evidence that heat shock 
proteins (HSPs) respond to heat stress by removing denatured proteins 
and safeguard cellular integrity (Jeyachandran et al., 2023). In a GWAS 
analysis in large yellow croaker, three HSP genes (hsf1, dnajb4 and 
hikeshi) were considered as candidates for association with heat toler
ance trait (Wu et al., 2021). From the GWAS results in our study, hspa5 
and DNAJC5, both members of the HSP family, were identified among 
236 candidate genes. The hspa5 gene encodes a heat shock protein 70 
(HSP70) protein, plays a key role in the folding and assembling of pro
teins in the lumen of the endoplasmic reticulum (ER) and serves as a 
primary regulator of ER homeostasis. Published studies have shown that 
the relative expressions of hspa5 significantly increases after heat stress 
in the spotted sea bass muscle, gill and liver tissues (Sun et al., 2021). 
Furthermore, the crucial role of the hspa5 in responding to elevated 

Fig. 8. Comparison of predictive accuracies of heat tolerance trait with different models using SNP (A) and InDel markers (B), respectively. Different colors and 
shapes represent standard errors and variant types, respectively.

Fig. 9. Comparison of predictive accuracies using two selection strategies for heat tolerance trait using SNP (A) and InDel markers (B), respectively. Different shapes 
represent different selection strategies and different colors represent the size of the standard errors.
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temperatures has been described in other fish, including Chinese tongue 
sole (Cynoglossus semilaevis) (Wang et al., 2024), olive flounder (Para
lichthys olivaceus) (Kim et al., 2021) and spotted seatrout (Cynoscion 
nebulosus) (Song and McDowell, 2021). DNAJC5 is one of HSP40 family 
members and functions in many cellular processes, such as membrane 
trafficking and protein folding by regulating the ATPase activity of the 
HSP70 (Paul et al., 2022). For instance, the methylation level of DNAJC5 
was observed to be different between control and heat-stressed groups in 
pig, identifying its involvement in processes related to cellular defense 
and stress response (Hao et al., 2016). Overall, the heat shock protein 
family genes exert a key role in the response to heat stress.

As hub candidate genes, mrpl13 (mitochondrial ribosomal protein 
L13) and ndufs8a (NADH: ubiquinone oxidoreductase core subunit S8) 
were highlighted for their association with mitochondria function. 
Mrpl13, encoded by nuclear genes, is involved in protein synthesis, 
mitochondrial translation and metabolism of proteins within the mito
chondrion. In clinical therapy, mrpl13 has been shown to promote the 
proliferation of cancer cells and serves as potential prognostic marker 
(Jing et al., 2021). In aquaculture species, cardiac mitochondrial func
tion in New Zealand wrasse (Notolabrus celidotus) was significantly 
altered by adaptation to summer temperatures (Iftikar et al., 2015). The 
ndufs8a gene encodes a subunit of mitochondrial NADH: ubiquinone 
oxidoreductase and is an essential component of the mitochondrial 
membrane respiratory chain NADH dehydrogenase (Haack et al., 2012). 
This complex uses ubiquinone as an electron acceptor to catalyze elec
tron transfer from NADH through the respiratory chain. Liver tran
scriptomic analysis after heat stress treatment revealed the relative 
expression levels of the ndufs8a gene was significant decrease in large 
yellow croaker (Qian and Xue, 2016). Similarly, the transcript of ndufs8a 
was induced by heatwaves in a clam species (Ruditapes philippinarum) 
(García-Souto et al., 2024). It is well established that mitochondria are 
vulnerable to heat stress (Marquez-Acevedo et al., 2023). Mitochondria 
provide energy to the cell through oxidative phosphorylation, and 
mitochondrial energy production is typically disrupted under high 
temperatures. We speculate that the mrpl13 and ndufs8a genes respond 
to heat stress by regulating the synthesis of ATP.

Cellular and organelle membranes are composed of a phospholipid 
bilayer that contains cholesterol and other lipids, where numerous 
biochemical reactions and processes occur (Hazel, 1995). GO enrich
ment of candidate genes showed significant enrichment of membrane 
category with the highest number of enriched genes, suggesting that 
membrane function may be influenced under heat stress. For instance, in 
black rockfish (Sebastes schlegelii), numerous differentially expressed 
genes (DEGs) exhibiting potential effects in adaptation to heat stress 
were categorized into membrane category (Lyu et al., 2018). Similarly, 
membrane term was also significantly enriched in grass carp under high 
temperature conditions (Zhang et al., 2022). Interestingly, the mem
brane trafficking pathway was significantly enriched in the pathway 
enrichment analysis of the candidate genes (Fig. 5). Membrane traf
ficking is the process by which macromolecules are delivered to the cell 
surface through membrane-bound vesicles (Lippincott-Schwartz et al., 
2000). This pathway comprises several organelles, including the ER, 
plasma membrane, tubulovesicular transport intermediates and Golgi 
complex. Membrane trafficking between these organelles following 
highly organized routes, including clathrin-mediated endocytosis, ER to 
golgi anterograde transport, trans-golgi network vesicle budding, Rab 
regulation of trafficking, intra-golgi and retrograde golgi-to-ER traffic 
and endosomal sorting complex required for transport. For instance, 
proteins are synthesized and assembled in the ER and then delivered into 
the Golgi complex for maturation. After that, this protein is sorted in the 
trans Golgi network and then packaged into endosomes that fuse with 
the cell surface through the cytoplasm. For the exogenous macromole
cules, clathrin-mediated endocytosis plays a significant role in control
ling the uptake of materials from the plasma membrane, which are then 
delivered into the endosome. Useless or conformationally incorrect 
substances are digested by lysosomes. The key regulators of intracellular 

membrane trafficking are the Rab proteins, which contributes to the 
specificity of trafficking by localizing to the membranes of distinct or
ganelles and interacting with effectors (Stenmark, 2009). The specific 
organelle response to heat stress has been demonstrated in earlier re
searches. For example, ER stress was induced by heat in the largemouth 
bass liver (Micropterus salmoides) (Zhao et al., 2022), and golgi apparatus 
were found to be involved in the response to the marine heatwave in the 
liver of Acanthochromis polyacanthus (Chan et al., 2022). Evidence has 
also been reported in the goby fish, where several Rab genes were 
induced or repressed expression by heat stress, mediating retrograde 
golgi-ER transport (Buckley et al., 2006). Overall, membrane trafficking 
responds to thermal excitation by delivering a range of macromolecules.

Heritability is central for genomic selection programs to pass traits 
sustainably to offspring (Bennett et al., 2014). The estimated heritability 
of heat tolerance trait has varied among species. For example, a high 
heritability value (h2 = 0.47) was estimated for high-temperature 
tolerance, with LOE as the endpoint in Atlantic salmon (Benfey et al., 
2022). Similarly, the heritability of resistance to acute high temperature 
were 0.325 in Pacific abalone (Haliotis discus hannai) and 0.29 in 
rainbow trout (Lagarde et al., 2023; Yu et al., 2021). Conversely, a low 
heritability of survival after heat shock challenge was observed with a 
value of 0.15 in Pacific oyster (Crassostrea gigas) (Camara et al., 2017). 
Heritability estimates are influenced by various factors, including spe
cies, populations, degree of inbreeding, genetic background, maternal 
effect, statistical models and trait measurements (Ødegård et al., 2011; 
Omeka et al., 2022). Notably, four different populations of turbot 
(Scophthalmus maximus) exhibited distinct heritability values (0.239 ±
0.141, 0.111 ± 0.080, 0.075 ± 0.026, and − 0.019 ± 0.011) for heat 
tolerance trait (Ma et al., 2018). Additionally, in Zhikong scallop 
(Chlamys farreri), the heritability of heat tolerance traits differed be
tween survival status (0.52 ± 0.04) and survival time (0.24 ± 0.03) (Yu 
et al., 2023). The heritability of heat tolerance in spotted sea bass in our 
study was estimated to be 0.13 ± 0.07, which is similar to the herita
bility of rainbow trout (0.13 ± 0.04) for survival under chronic thermal 
stress (Gallardo-Hidalgo et al., 2021), suggesting that it was strong 
influenced by environmental factors. Given the absence of prior studies 
on heat resistance in spotted sea bass, comparisons of heritability values 
across populations and trait measurements were not feasible. Never
theless, despite the low heritability for heat tolerance trait in spotted sea 
bass, genome-wide selection breeding strategy could still be applied to 
boost heat tolerance performance.

GS has been demonstrated to be efficacious method for improving 
economic traits in fish, including female reproduction traits in rainbow 
trout (D’Ambrosio et al., 2020), disease resistance in Japanese flounder 
(Liu et al., 2018) and heat tolerance in Zhikong scallop (Yu et al., 2023). 
In this study, the predictive accuracy was assessed for thermal tolerance 
in spotted sea bass using rrBLUP, Bayes A, Bayes B, Bayes C, BL, BRR, 
SVM, RKHS, GBM and RF models. It was shown that the predictive ac
curacy of both SNP and InDel markers maintained low values at different 
marker densities. In contrast, GP for growth traits in spotted sea bass 
indicted that the predictive performance of the rrBLUP model out
performed the Bayesian models at different SNP densities (Zhang et al., 
2023). For heat tolerance in abalone (Liu et al., 2022; VanRaden, 2008), 
the accuracy of Bayes B model prediction was superior to that of GBLUP 
model (produces the same result as rrBLUP). In Zhikong scallop, the 
prediction accuracies of the four models for survival status under ther
mal stress were ranked as follows: GBLUP > Bayes B > Bayes C > Bayes 
A (Yu et al., 2023). In addition to BLUP and Bayesian models, machine 
learning algorithms (ML) have also been used for genomic prediction, 
including SVM, RKHS, GBM and RF models. However, these ML models 
failed to show a superior prediction performance than BLUP and 
Bayesian models. The effectiveness of ML model is contingent upon high 
quality and sufficiently large training data. Although the predictive ac
curacy of ML models was affected by both training population size and 
marker density, increasing training population size improves genomic 
predictive performance more effectively than increasing marker density, 
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which was demonstrated in four growth traits in Bay scallops (Argo
pecten irradians) using ML models prediction (Zhu et al., 2021). In this 
study, larger training population sizes may be desirable for ML models to 
improve predictive accuracy. Generally, the accuracy of GP is influenced 
by various factors, including the number of genes affecting traits, heri
tability of traits, reference population size, average length of chromo
somes, relationship between the reference and candidate population, 
marker density and GEBV estimation method (Song et al., 2023). Thus, it 
is not easy to draw conclusion about which model is more suitable for 
the target trait, a better strategy is to evaluate various statistical 
methods for their performance, select the one with the highest predic
tive accuracy and use that model for GP.

One of the major roadblocks to the implementation of GS is that the 
precise prediction of GEBVs require a vast number of markers and the 
expensive costs associated with genotyping these markers (Goddard and 
Hayes, 2007; Peñaloza et al., 2022). Thus, selecting the optimal variant 
panel improves the GP accuracy and reduces genotyping costs. The 
predictive accuracy showed that the GWAS-p strategy was consistently 
higher than that of Random strategy across all different variance den
sities. Even at low variance densities, such as 500 SNPs, the prediction 
accuracy of the GWAS-p strategy also exhibited superior accuracy. 
Specifically, the rrBLUP and SVM models had a maximum prediction 
accuracy of 0.7734 ± 0.026 at 10 k SNP density and 0.7454 ± 0.0316 at 
1 k InDel density, respectively. This might be attributed to the fact that 
these heat tolerance related SNPs or InDels were detected by GWAS 
analysis, which explained the majority of the genetic variance. Similar 
findings have been documented for heat tolerance in abalone (Liu et al., 
2022) and Zhikong scallop (Yu et al., 2023), disease resistance in gilt
head sea bream (Sparus aurata) (Luo et al., 2021), and ammonia toler
ance in orange-spotted grouper (E. coioides) (Shan et al., 2021). Overall, 
GWAS-p strategy is a feasible and cost-effective method to achieve high 
prediction accuracy, and we would prefer the rrBLUP and SVM as the 
optimal models for SNP and InDel markers of thermal tolerance traits in 
spotted sea bass, respectively.

5. Conclusion

In the present study, genome-wide association study (GWAS) and 
genomic prediction (GP) were combined to elucidate genetic mechanism 
underlying thermal tolerance and to estimate the predictive accuracy of 
ten breeding models in spotted sea bass. As a result, 50 significant var
iants, including 31 SNPs and 19 InDels, were associated with heat 
tolerance trait, and annotated 236 candidate genes, among which hspa5, 
mrpl13 and ndufs8 were regarded as hub genes. Enrichment results 
showed that membrane trafficking pathway serves a key role in 
responding to thermal stress. Furthermore, we compared the predictive 
accuracies of ten GS models with different marker densities and two 
marker selection strategies, showing that the GWAS-p selection strategy 
exhibited higher prediction accuracy compared to the Random selection 
strategy. The rrBLUP and SVM models were identified as the optimal 
models for GS programs targeting heat tolerance trait in spotted sea bass 
for SNP and InDel markers, respectively. These findings lay solid foun
dations for investigation of heat tolerance of spotted sea bass and 
facilitate the application of GS for heat tolerance trait in aquatic species.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aquaculture.2024.741951.
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