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Chronic stress of high dietary 
carbohydrate level causes 
inflammation and influences 
glucose transport through SOCS3 
in Japanese flounder Paralichthys 
olivaceus
Kangyu Deng1, Mingzhu Pan1, Jiahuan Liu1, Mengxi Yang1, Zhixiang Gu1, Yue Zhang1, 
Guangxia Liu1, Dong Liu1, Wenbing Zhang1,2 & Kangsen Mai1,2

Carnivorous fish is thought to be high-glucose intolerance. But the reasons were still unclear. The aim 
of the present study is to investigate the effects of high level of dietary carbohydrate on the survival, 
growth and immune responses of Paralichthys olivaceus, and the underlying molecular mechanism 
related to the immune and glucose metabolism. P. olivaceus were fed with 8%, 16% and 24% of dietary 
carbohydrate for 10 weeks, respectively. After that, a glucose tolerance test (GTT) was conducted. 
Results showed that excessive (24%) dietary carbohydrate significantly decreased the growth and 
glucose tolerance ability according to the GTT. It significantly increased hepatic NADPH oxidase activity 
and malondialdehyde content and serum contents of IL-6 and advanced glycation end products. The 
expressions of glucose transport-relevant genes in liver and the content of related hormones in serum 
were analyzed. In conclusion, it was confirmed that IL-6 increased the expression of suppressor of 
cytokine signaling 3 (SOCS3) and regulated the downstream targets of PI3K-AKT mediated signal 
transduction, and then downregulated the glucose transporter 2 activity in liver of P. olivaceus fed diet 
with excessive carbohydrate level. It was suggested that SOCS3 served as a bridge between immune 
response and glucose metabolism in P. olivaceus.

Carbohydrate is an excellent energy source for vertebrates, but cannot be fully and efficiently used by fish, 
especially for carnivorous fish species. Most carnivorous fish have been considered as glucose intorlerance 
and often display a prolonged postprandial hyperglycemia after oral or injected glucose loading and intake of 
carbohydrate-enriched diets1–3. In addition, fish showed high mortality, reduced growth performance, low nutri-
ent utilization efficiencies and poor physiological functions, when administrated with excessive carbohydrate 
levels4–8. Many reasons were speculated to explain high-glucose intolerance in carnivorous fish, including a 
higher sensitivity of insulin to amino acids rather than glucose, inefficiencies in peripheral glucose utilization 
and absorption, inadequacies in homeostatic glucose regulation and imbalances of endogenous versus exogenous 
glucose sources9–13. However, there was no clearly conclusion at present.

Pronounced changes in glucose metabolism in fish could be induced by dietary carbohydrate levels. These 
changes included activities of the key enzymes involved in glucose metabolism, such as pyruvate kinase and 
glucokinase14,15. In previous study, genes of most of these enzymes have been cloned and characterized in fish. 
Meanwhile, the regulation of these enzymes at the molecular level by dietary carbohydrate manipulation has been 
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reported16–20. However, most of the previous studies focused on the glycolysis and gluconeogenesis. Little research 
was reported on the molecular regulation of the upstream pathways.

Previous studies showed that the carnivorous fed high level of dietary carbohydrate could have suppressed 
immunity21,22. However, only some apparent parameters were analyzed, such as growth performance, mortality 
and activity of the immune related enzymes23,24. In mammals, it was confirmed that glucose metabolism was 
related to the immune response of animals, such as anti-oxidative capacity and inflammation25–28. Production 
of H2O2 has been shown to regulate insulin release to modulate proximal and distal insulin signaling25,29. At 
the same time, impaired immunity including ROS and inflammation could also affect inslulin signal pathway 
through activating numerous intracellular serine kinases and negative regulators of cytokine signaling, such as 
c-Jun N-terminal kinase (JNK) and suppressor of cytokine signaling (SOCS)30–32. Recent years, human diabetes 
was even regarded as a chronic inflammatory response33. So, it is worth to investigate if the high-glucose intoler-
ance in fish is linked to the impaired immunity.

Japanese flounder (Paralichthys olivaceus) is a typical marine carnivorous fish species. After a 45-day feeing 
trial with different dietary carbohydrate sources, the previous study found that the Japanese flounder utilized 
dextrin more efficiently than glucose, and dextrin was a better source of energy than lipid. In that study, how-
ever, only the apparent parameters including growth performance, feed utilization and body compositions were 
analyzed34. The aim of the present study is to investigate the effects of high level of dietary carbohydrate on the 
survival, growth and immune responses of P. olivaceus, and the underlying molecular mechanism related to the 
immune and glucose metabolism.

Results
Survival and growth performance.  There were no significant differences in survival rate (SR, about 95%) 
among all the treatments (Fig. 1). With the increase of dietary carbohydrate levels, specific growth rate (SGR) 
significantly increased in the C16 group, and then decreased in the C24 group (p-value = 0.002). The lowest value 
of SGR was observed in the C8 group.

Serum parameters after feeding trial.  Data of the serum parameters are shown in Table 1. Compared 
with the C8 and C16 group, contents of total protein (TP), albumin (Alb), globulin (Glo), and advanced glyca-
tionend products (AGEs) in serum reached the significant highest values in the group of C24 (TP, p-value < 0.001; 
Alb, p-value = 0.024; Glo, p-value < 0.001; AGEs, p-value < 0.001). There were no significant differences in the 
content of tumor necrosis factor (TNF-α) and fasting serum insulin (FINS), activities of aspartate transam-
inase (AST) in serum among all the groups. The highest concentration of interleukin 6 (IL-6) in serum was 
found in C24 group, which was significantly higher than that in C16 group (p-value = 0.015). The activities of 
glutamic-pyruvic transaminase (ALT) and alkaline phosphatase (ALP) in serum significantly increased with die-
tary carbohydrate levels (ALT, p-value = 0.025; ALP, p-value = 0.045). There was no significant difference in the 
content of leptin between the group of C16 and C24. Both of them were significantly higher than that in C8 group 
(P < 0.001). There were no significant differences in concentration of adiponectin in serum among all the three 
groups.

Analysis of GTT.  The fasting serum glucose (FSG) of the three groups were 1.15 ± 0.17, 1.25 ± 0.21 and 
1.35 ± 0.12 mmol/L, respectively. In addition, there were no significant differences among all the three groups 
(Table 2). At the beginning, glucose injection induced a notable increase of the serum glucose level in all the 
groups, and then resulted in a treatment (C8, C16 and C24) × time (sampling time points after injection) inter-
action (Fig. 2a). During the test, serum glucose concentrations in all groups were significant higher than the FSG. 
At the 48th hour after injection, the serum glucose concentration in all the groups returned to the basal level.

The parameters of fitting equation (equation (3)) are shown in Table 3. Coefficients of all parameters were with 
95% confidence bounds. The values of R square in all equations were over 0.84. According to the fitted equation, 

Figure 1.  Survival rate (SR) and the specific growth rate (SGR) of Japanese flounder after the 10-week feeding 
trial. The values represent the means ± S.D., n = 3. Values with different letters mean significantly different 
(P < 0.05).
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the max serum glucose concentration (Cmax) of serum peaked at 7.35 ± 0.90, 7.65 ± 0.40, 3.21 ± 0.20 hour with 
the Cmax at 10.67 ± 0.35, 11.85 ± 0.32, 14.02 ± 0.13. No significant differences were found in areas under the curve 
of glucose during the 48 h of GTT (AUC48) among all the groups (Table 2). The highest value of clearance rate 
during the 48 h of GTT (CR48) was found in C16 group (2.38 ± 0.23%/h), and the lowest one was in C24 group 
(0.27 ± 0.25%/h). Compared with that in C24 group, the time return to basal serum glucose (Tbasal) was signifi-
cantly shorter in C16 group (33.32 ± 1.61) (p-value = 0.000) and C8 group (37.22 ± 1.17) (p-value = 0.002).

In the regard to the three groups, there were no significant differences in the serum insulin concentrations 
among all the sampling time points after injection of glucose. And there was no clear trend on the serum insulin 
concentrations changing with the sampling times (Fig. 2b).

Histological structure and oxidation resistance of liver.  Hepatocytes from group C8 and C16 showed normal his-
tology (Fig. 3). In C24 group, some hepatic cell outlines were indistinguishable and some nuclei were dissolved. 
Obvious hepatocytes swelling, nucleus polarization and lipid vacuolization were observed in C24 group.

The value of total anti-oxidative capacities (T-AOC) in liver in C24 group was significantly lower than those 
in C8 and C16 groups (Table 4) (p-value = 0.004). The C8 group had a significant higher superoxide dismutase 
(SOD) activity in liver than C24 group (p-value = 0.007). The C24 group had a significant higher malondial-
dehyde (MDA) in liver than C8 and C16 groups (p-value = 0.002). C16 group had a significant lower NADPH 
oxidase (NOX) activity in liver than C24 (p-value = 0.040), and there was no significant difference between C8 
and C16.

Gene and protein expression in liver.  The gene expressions of glucose utilization-relevant genes are 
shown in Fig. 4a. The mRNA levels of insulin receptor substrate 2 (IRS2), c-Jun N-terminal kinase 1 (JNK1) 
and protein kinase B 1 (AKT1) in liver had no significant differences among all the three groups. Gene expres-
sions of the insulin receptor substrate 1 (IRS1) and glucokinase (GK) in C24 group was significantly lower than 
that in C16 group (IRS1, p-value = 0.039; GK, p-value = 0.003). Compared with C8, the mRNA level of SOCS3 
had the significant highest value in C24 group (p-value = 0.014), and the significant lowest value in C16 group 
(p-value = 0.001)). The mRNA level of phosphoinositide 3-kinase (PI3K), protein kinase B 2 (AKT2), glucose 
transporter 2 (GLUT2) and phosphofructokinase (PFK) had the significant highest value in C16 group (PI3K, 
p-value = 0.014; AKT2, p-value = 0.002; GLUT2, p-value = 0.008; PFK, p-value = 0.001), but no differences were 
found between C8 and C24. The mRNA levels of pyruvate kinase (PK) had the significantly higher and lower 
value in C16 and C24, respectively (p-value < 0.001). At the same time, phosphorylation of AKT (P-AKT) level in 

Parameters

Diets

C8 C16 C24

Total protein (g/L) 25.13 ± 1.85b 26.73 ± 1.97b 37.40 ± 0.87a

Albumin (g/L) 4.25 ± 0.70b 4.13 ± 0.90b 6.20 ± 0.96a

Globulin (g/L) 20.88 ± 1.35b 20.75 ± 3.47b 31.20 ± 0.89a

IL-6 (pg/mL) 20.96 ± 2.63ab 19.56 ± 2.00b 24.51 ± 0.59a

TNF-α (pg/mL) 49.22 ± 7.79 51.33 ± 9.31 50.81 ± 1.71

ALT (U/L) 5.40 ± 0.36b 5.80 ± 0.42ab 6.40 ± 0.36a

AST (U/L) 12.90 ± 1.36 12.13 ± 1.69 12.55 ± 0.62

ALP (U/L) 61.65 ± 3.10b 64.68 ± 2.31ab 68.47 ± 3.41a

AGEs (mg/ml) 4.26 ± 0.11b 4.63 ± 0.23b 5.24 ± 0.23a

FINS (mIU/L) 21.33 ± 2.72 21.37 ± 2.04 21.89 ± 3.34

Leptin (ng/ml) 8.15 ± 0.50b 11.76 ± 0.74a 11.57 ± 0.80a

Adiponectin (µg/ml) 6.82 ± 1.29 7.09 ± 1.69 7.70 ± 1.39

Table 1.  Serum parameters of Japanese flounder after the 10-week feeding trial. Values are presented as mean ± S.D., 
n = 3 (8 fish/replicate). Values followed by different letters in the same row are significantly different (P < 0.05).

Parameters

Diets

C8 C16 C24

FSG (mmol/L) 1.15 ± 0.17 1.25 ± 0.21 1.35 ± 0.12

AUC48 ((mmol/L) × h) 219.27 ± 1.46 229.52 ± 4.19 222.82 ± 7.90

Cmax glucose (mmol/L) 10.67 ± 0.35c 11.85 ± 0.32b 14.02 ± 0.13a

Tmax (h) 7.35 ± 0.90a 7.65 ± 0.40a 3.21 ± 0.20b

CR48 (%/h) 1.29 ± 0.33b 2.38 ± 0.23a 0.27 ± 0.25c

Tbasal (h) 37.22 ± 1.17b 33.32 ± 1.61b 45.72 ± 2.13a

Table 2.  Analyzed parameters in the glucose tolerance test. Values of fasting serum glucose are presented as 
mean ± S.D., n = 3 (8 fish/replicate) and other values are presented as mean ± S.D., n = 3 (3 fish/replicate). 
Values followed by different letter in the same row are significantly different (P < 0.05).
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Figure 2.  Response to glucose tolerance test of Japanese flounder after the 10-week feeding trial. (a) Serum 
glucose concentrations (b) Serum insulin concentrations. Values at 0 h are presented as mean ± S.D., n = 3 (8 
fish/replicate) and the other values represented the means ± S.D., n = 3 (3 fish/replicate). * represents significant 
difference between C24 and C8 (P < 0.05); ** represents significant difference among all groups, (P < 0.05).

Diets

Parameters

a b c d R2

C8

18.02 −0.05038 −15.36 −0.2876 0.8523

20.60 −0.05443 −17.97 −0.2546 0.8973

32.01 −0.06802 −29.32 −0.1586 0.8489

C16

34.65 −0.07830 −31.80 −0.1876 0.8801

39.42 −0.07570 −36.49 −0.1689 0.8966

67.51 −0.09075 −65.05 −0.1434 0.8990

C24

18.10 −0.05837 −16.75 −0.9084 0.9287

18.18 −0.05428 −16.85 −0.8265 0.9355

17.43 −0.05542 −15.95 −0.9646 0.9309

Table 3.  Parameters in the regression equations after the glucose tolerance test. Coefficients of all parameter are 
with 95% confidence bounds.
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C16 was significantly higher than that in C24 (p-value = 0.009) and the total of AKT (T-AKT) in C16 was signif-
icantly higher than other two groups (T-AKT, p-value = 0.032) (Fig. 4b–d).

Discussion
Based on the growth rate, the optimal levels of dietary carbohydrate for the carnivorous species, such as gilthead 
sea bream, giant croaker, Chinese long snout catfish, were determined less than 20%15,35,36. Instead, compared 
to that in the carnivorous species, the optimal levels for herbivorous species and omnivore species, such as gibel 
carp, white sea bream and grass carp, can be higher than 30%, even to 50%37–39. Excessive level of dietary carbo-
hydrate could result in negative effects. In the present study, dietary carbohydrate supplementation at 24% led to 
reduced growth compared with 16% of dietary carbohydrate. Liver is a main metabolic organ. According to the 
histological analysis, the liver cell of Japanese flounder fed with 24% of dietary carbohydrate potentially indicated 
the impaired fuction of liver. In addtion, more oxidative damage in the liver of Japanese flounder was found in 
group with 24% of dietary carbohydrate compared with the other two groups. Based on these data, it was sug-
gested 24% of dietary glucose concentration was overdose for Japanese flounder.

Impaired immunity in fish by overdose of dietary carbohydrate was observed in previous studies. It was 
reported that high level of dietary carbohydrate reduced plasma IgM and lysozyme levels in European white-
fish40. The blood haemoglobin was negatively correlated with dietary carbohydrate levels in Atlantic salmon by 
long-term feeding of a high carbohydrate diet (20–30%)24. After the 10-week feeding trial, in the present study, 
the concentration of TP, Alb, Glo, AGEs and IL-6, the activities of ALP and ALT in serum and the content of 
MDA in liver significantly increased, while the activity of T-AOC and SOD in liver of Japanese flounder signif-
icantly decreased by the excessive dietary carbohydrate inclusion at 24%. This suggested that excessive dietary 
carbohydrate level could increase the oxidative stress and inflammation in Japanese flounder.

A fact was found that the dietary carbohydate intake affected the glucose tolerance in fish, while it seemed to 
have a poor ability to take care of excess glucose41,42. In mammals, fasting glucose concentration and fasting insu-
lin concentration were used in calculating insulin sensitivity or resistance, in order to evaluate the glucose utili-
zation ability. The relationship between blood glucose concentration in fish and dietary carbohydrate level was 
inconclusive. Hemre et al. found that blood glucose level in Atlantic salmon was correlated with dietary carbohy-
drate level43, while some studies reported serum glucose did not differ between the groups fed different dietary 
carbohydrate levels24,44. Insulin is a major pancreatic endocrine hormone, which regulates blood glucose levels 
and the underlying metabolic pathways in higher vertebrates. In the present study, FSG was not significantly 

Figure 3.  Effects of dietary carborhydrate levels on the hepatic histological characteristics of Japanese flounder 
after the 10-week feeding trial. Magnifications are ×400 (top) and ×1000 (bottom), and the scale bars are 20 μm 
(top) and 50 μm (bottom), respectively.

Parameters

Diets

C8 C16 C24

T-AOC (U/mg protein) 0.66 ± 0.07a 0.82 ± 0.16a 0.41 ± 0.07b

SOD (U/mg protein) 1.45 ± 0.10a 1.30 ± 0.05ab 1.19 ± 0.04b

MDA (nmol/mg protein) 0.96 ± 0.09b 0.90 ± 0.07b 1.22 ± 0.08a

NOX (U/mg protein) 0.98 ± 0.05ab 0.90 ± 0.25b 1.65 ± 0.45a

Table 4.  Anti-oxidative parameters in liver of Japanese flounder after the 10-week feeding trial. Values are 
presented as mean ± S.D., n = 3 (8 fish/replicate). Values followed by different letters in the same row are 
significantly different (P < 0.05).
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affected by dietary levels. Meanwhile, the levels of circulating insulin kept the same level in Japanese flounder fed 
different levels of dietary carbohydrate in this study. This result was in accordance with an earlier study in rainbow 
trout, in which it was found that the insulin content in plasma of trout fed with the carbohydrate-enriched diet 
was not significantly increased when compared with that with carbohydrate-free diet45.

In fact, apart from FSG and in FINS, GTT is a more accurate way to evaluate the glucose utilization ability, 
where AUC of glucose was used to estimate the content of individual loaded glucose, CR and Tbasal were used to 
judge the speed of glucose disappearance. A lower CR and longer Tbasal with a large AUC were regared as impaired 
glucose tolerance46–48. GTT is required when humans have high fasting glucose levels but do not meet the diag-
nostic criteria for diabetes. GTT have been conducted in many fish species and is useful for evaluating glucose 
tolerance, such as rainbow trout46, channel catfish49 and white sturgeon50. In the present study, the mathematical 
modeling was used to evaluate the ability of glucose utilization during GTT in Japanese flounder after a 10-week 
feeding trial with different ditary carbohydrate levels. Consistent with the increased SGR, although no significant 
differences in AUCs were found, the fish fed with 16% of dietary carbohydrate had a significant higher CR and 
lower Tbasal. According to the data on growth and GTT, it was suggested that the ability of glucose utilization of 
Japanese flounder was improved when fed with 16% of dietary carbohydrate. And the feeding adapting was help-
ful for glucose tolerance.

Ability of glucose utilization is related to glucosesensing. Rainbow trout fed a diet with 20% of carbohydrate 
showed a higher postprandial glucose than that fed carbohydrate-free diet. This showed a positive response to 
the dietary carbohydrate based on the major components of glucosensing system including glucose transporters 
(GLUTs)51. Glucose metabolism depends on the intake of glucose. Insulin-induced PI3K-AKT signaling con-
tributes to the regulation of GLUT2-mediated glucose uptake in liver. PI3K and AKT, which were two major 
nodes downstream of insulin receptor substrate (IRS), have been implicated in many of the metabolic actions of 
insulin, such as glucose transport. The rate-limiting enzymes in the glycolysis pathways, such as GK, PFK and 
PK, played key roles in glucose metabolism. Results in the present study showed that the upregulation of PI3K, 

Figure 4.  Gene and protein levels in liver of Japanese flounder after the 10-week feeding trial. (a) Expressions 
levels of glucose metabolism related genes were normalized to β-actin levels and expressed as relative expression 
values to those in C8 group. (b) The relative protein abundances of T-AKT and P-AKT in livers were expressed 
as relative expression values to those in C8 group. (c,d) The bars represent the mean ± S.D., n = 3 (8 fish/
replicate). Values with different letters mean significantly different (P < 0.05). Unprocessed original scans of 
blots are shown in Supplementary Fig. 1.
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AKT2, GLUT2, PK and PFK transcription and activies of the total AKT and AKT phosphorylation were found in 
C16 group. These could be helpful to explain why the Japanes flounder fed with 16% of dietary carbohydrate had 
better glucose utilization ability as shown by the data on growth and GTT.

Moreover, many studies in mammals have found that leptin and adiponectin could improve the glucose 
transport52–54, eventhough the detail was not clear. Fish definitely do have these hormones with some functional 
similarities and many other distinct features55. In the present study, there were no significant differences in con-
centration of adiponectin in serum among all the three groups. However, the concentrations of leptin in groups 
of C16 and C24 were significantly higher than that in C8 group. It was suggested that an increasing level of leptin 
not adiponectin improved the glucose transport in Japanese flounder. In the previous study in zebrafish, it was 
also found that leptin signaling regulates glucose homeostasis56. In the present study, however, Japanese flounder 
fed with higher dietary carbohydrate (24%) had a longer Tbasal with lower CR, a dereasesd activety of PI3K-AKT 
and glycolysis pathways, a downregulated GLUT2 transcription than those fed with 16% of dietary carbohydrate. 
This result implied that excessive dietary carbohydrate inhibited the ability of glucose transportation and glucose 
catabolism, which was not associated with the content of serum insulin, leptin and adiponectin.

Previous studies suggested many reasons to explain the high-glucose intolerance in fish, and many issues 
remained under debate. A growing number of studies indicated that the oxidative stress influences the insulin 
signal pathway in mammals57,58. Although these findings were reported in muscle cell, it is expected that they also 
occur in hepatocytes because the primary metabolic abnormalities in these cells also induce ROS production, 
thus affecting glucose utilization. AGEs accumulate under high-glucose conditions and affect ROS producing 
by NADPH oxidase59–62. In the present study, it was implied that ROS level increased in organism with a signifi-
cant up-regulation in AGEs and NADPH oxidase in Japanese flounder fed diet with excessive carbohydrate level 
(24%). Houstis et al. pointed out that increases in ROS levels precede the onset of insulin resistance (IR) and 
might be causally linked to it63. It is still not clear exactly how oxidative stress causes insulin resistance or meta-
bolic dysfunction in mammals. The possible mechanism suggested is that ROS could inhibit IRS to regulate the 
insulin signal pathway by c-Jun N-terminal kinase (JNK)31,32. JNK family members are encoded by three genetic 
loci, JNK1-3, JNK1 isoform is the major contributor to insulin resistance64. Activation of JNK1 has been shown 
to directly phosporylate IRS-1 at inhibitory sites that prevent recruitment of this protein to the activated insulin 
receptor32. In the present study, no significant difference in JNK1 gene expression was found although it was 
suggested that Japanese flounder fed with 24% of dietary carbohydrate was under oxidative stress. Another fact 
was found that inflammation can be induced by ROS through the induction of pro-inflammatory cytokines (e.g., 
TNF-α and IL-6), which are main key factors to affect glucose utilization via inducing liver insulin resistance65–69. 
TNF-α could also induce JNK to inhibit IRS70. In the present study, the serum TNF-α and hepatic JNK1 gene 
expressions were not significantly affected by dietary carbohydrate levels, whereas IL-6 significanlty increased 
in C24 group compared with C16 group. These results indicated that TNF-α was not associated with the direct 
effect of carbohydrate. In fact, IL-6 could induce suppressor of cytokine signaling 3 (SOCS3) expression to affect 
insulin signaling71. SOCS3 is highly expressed in the liver and plays an important role in regulating IR72. The over-
expression of SOCS3 can reduce insulin secretion by inhibiting preproinsulin gene transcription73. Furthermore, 
overexpression of SOCS3 decreased the hepatic expressions of IRS1, IRS2 and PI3K, and resulted in glucose 
intolerance and decrease glucose uptake74,75. In the present study, the observed differences in the gene expression 
levels of SOCS3 and IRS1 between Japanese flounder fed 24% and 16% carbohydrate. The downregulation gene 
expressions of downstream PI3K, AKT2, GLUT2, GK, PFK and PK, and total and phosphorylation of AKT level 
were found in C24 compared with C16. It was indicated that the high level of SOCS3 level of Japanese flounder 
fed with 24% of dietary carbohydrate inhibited the glucose uptake through decreasing IRS1 gene expression and 
the downstream PI3K-AKT signal way and thus affected glucose utilization. In addition, energy sensing was 
another factor could affect glucose utilization, and AMPK was an important energy sensor. In present study, the 
increasing digestable energy may result in the change of AMPK activity. The activation of AMPK was found to 
induce glucose uptake in trout myotubes76. In terms of nutritional regulation, high glucose intake was found to 
reduce the phosphorylation of AMPK in the liver of fish77,78. Moreover, the activity of AMPK was associated with 
imflammation. The upregulation of AMPK decreased the mRNA expression of proinflammatory79. Based on 
above researches, it can be speculate that the activity of AMPK decreasd and thus further promoted the inflam-
mation. These data partly explained why the fish fed with 24% of dietary carbohydrate had lower ability of glucose 
utilization than those fed with 16% of dietary carbohydrate.

In conclusion, dietary carbohydrate is necessary for the growth and immune response of Japanese flounder. 
Diet with 16% of carbohydrate significantly improved the growth, glucose utilization and immunity of fish. And 
the feeding adapting was helpful for glucose tolerance. Excessive level (24%) of dietary carbohydrate caused 
oxidative stress, inflammation and influenced glucose transport. Based on the present data, it was suggested that 
SOCS3 served as a bridge between immune response and glucose metabolism. IL-6 increased the gene expression 
of SOCS3 and thus regulated the downstream targets of PI3K-AKT mediated signal transduction that underlie 
the downregulation of GLUT2 activity, glucose uptake and metabolism in liver. This hypothesis was illustrated 
in Fig. 5.

Materials and Methods
Experimental diet.  Diet formulation and its proximate composition are given in Table 5. Three isonitroge-
nous and isolipidic diets are formulated with graded levels of carbohydrate (8%, 16% and 24%, respectively). They 
were named as C8, C16 and C24, respectively. All ingredients were finely ground, well mixed, and dry extruded 
in a laboratory pellet mill (EL220, Shangdong Haiyang, China). The diameters of the diet particles were 3 mm 
and 5 mm die. The particles were dried in a forced air oven at 50 °C for 8 h and stored in a refrigerator (−20 °C) 
until used.
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Animals and feeding trial.  Japanese flounders were obtained from Haiyang, Shandong Province, China. 
They (initial body weight: 7.14 ± 0.10 g) were randomly distributed into 9 tanks (3, 000 L) in a flow-through water 
system supplied with sand filtered seawater at a flow rate of 2.5 L/min. Three tanks were used for one treatment 
(150 fish/tank). The fish were fed to apparent satiation twice daily (8:00 and 18:00) for 10 weeks. During the 
feeding trial, the dissolved oxygen content was approximately 7.4 mg/L. Water temperature naturally ranged from 
21 to 24 °C. The photoperiod was maintained at intervals of 13-h light: 11-h dark. All procedures performed in 
study were in strict accordance with the recommendations in the Guide for the Use of Experimental Animals of 
Ocean University of China. The protocols for animal care and handing used in this study were approved by the 
Institutional Animal Care and Use Committee of Ocean University of China.

Sampling.  At the end of the 10 weeks feeding trial, all the fish were fasted for 24 h after the last feeding 
and anaesthetized with MS-222 (Sigma, 50 mg L−1 water) before sampling. Fish in each tank were weighed and 
counted to determine SGR and SR. Eigth fish per tank were sampled to collect blood from coccygeal vertebra 
vein. The serum was separated and stored at −80 °C until analysis80,81. After that, these fish were dissected to 
collect liver. And the livers were quick frozen using liquid nitrogen and stored at −80 °C for subsequently analysis.

Figure 5.  A potential reason of high gluose intolerance in Japanese flounder.

Ingredients (%)

Diets

C8 C16 C24

Fish meal 57 57 57

Wheat gluten 13 13 13

Alpha-starch 5 5 5

Corn starch 1.7 9.7 17.7

Soybean lecithin 1 1 1

Fish oil 3.5 3.5 3.5

Choline chloride 0.4 0.4 0.4

Ethoxyquin 0.05 0.05 0.05

Mold inhibitor 0.1 0.1 0.1

Monocalcium phosphate 0.5 0.5 0.5

Vitamin premixa 0.6 0.6 0.6

Minerals premixb 0.5 0.5 0.5

Carboxymethyl cellulose 16.65 8.65 0.65

Proximate analysis

Dry matter (DM), % diet 96.80 97.23 96.96

Crude protein, % DM 49.59 49.60 50.04

Crude lipid, % DM 9.73 9.98 9.96

Reducing sugar, % DM 7.01 15.60 23.18

Ash, % DM 12.46 11.73 12.13

Gross energy (GE), kJ/g 18.93 19.06 19.20

Table 5.  Formulation and proximate chemical composition of diets. aVitamin premix (g kg−1 of mixture): 
microcrystalline cellulose, 16.473; VA, 0.032; VB1, 0.025; VB2, 0.045; VB6, 0.02; VB12, 0.01; VD, 0.035; VE, 
0.24; VK, 0.01; calcium pantothenate, 0.06; nicotinic acid, 0.2; folic acid, 0.02; biotin, 0.06; inositol, 0.8; VC 
phosphate, 2. bMineral premix (g kg−1 of mixture): MgSO4·7H2O, 1.2; CuSO4·5H2O, 0.01; FeSO4·H2O, 0.08; 
ZnSO4·H2O, 0.05; MnSO4·H2O, 1.2; CuSO4·5H2O, 0.01; FeSO4·H2O, 0.08; ZnSO4·H2O, 0.045; CoCl2·6H2O (1%), 
0.050 Na2SeO3 (1%), 0.02; calcium iodate, 0.06; zeolite powder, 8.485.



www.nature.com/scientificreports/

9ScieNTiFic RePorts |  (2018) 8:7415  | DOI:10.1038/s41598-018-25412-w

Glucose tolerance test.  At the end of the feeding trial, the serum of fish starved for 24 h was used to meas-
ure FSG and FINS concentration, which were setted as a baseline for AUC of glucose calculation and for com-
parison with insulin content after GTT, respectively. Another 30 anaesthetized fish per tank were used for GTT 
according to the method of López-Olmeda82. Anaesthetized fish per tank were intraperitoneal injected with glu-
cose at a concentration of 600 mg per kg fish. After that, the blood was taken at 1, 3, 6, 9, 12, 18, 24 and 48 h after 
injection, respectively, to analyze serum glucose and insulin concentrations. Three fish per tank were used for 
collecting the serum at each sampling time point. The AUC of glucose, CR, Cmax, Tbasal and the time reach the max 
serum glucose concentration (Tmax) were calculated.

Serum and liver parameters.  The concentrations of glucose, TP, Alb and Glo, and the activities of ALP, 
ALT and AST in serum were analyzed by the automatic biochemical analyzer (AU5400, Beckman). The concen-
tration of insulin, leptin, adiponectin, IL-6, AGEs and TNF-α in serum were determined using a double anti-
body sandwich enzyme-linked immunosorbent assay. Kits for insulin, leptin, IL-6 and TNF-α were purchased 
from Cusabio, China. Kits for adiponectin and AGEs were purchased from Mybiosource, USA. All these kits 
were developed using antigenic regions completely conserved in fish83–86. The protein concentration, T-AOC, 
MDA, and SOD activity in liver were measured by commercial kits (Nanjing Jiancheng Bioengineering Institute, 
China)87–89. And the activity of NOX in liver was detected according to Li et al.89.

Histological analysis.  Liver samples were fixed in 10% neutral buffered formalin for 24 h and then trans-
ferred to 70% ethanol. Samples were then dehydrated through graded levels of ethanol (70%, 80%, 85%, 90%, 95%, 
100%) using a tissue processor, cleared and embedded in paraffin wax (PPDT-12C1, Ceike, China). Transverse 
sections (~7 μm) were prepared using a rotary microtome (RM2235, Leica, China), mounted onto slides and 
processed for staining (Thermo Gemini A2, USA) with hematoxylin and eosin (H&E, Nanjing Jiancheng 
Bioengineering Institute, China). Slides were viewed under light microscopy and photographed with a digital 
camera (Olympus, DP72, Nikon, Japan).

Real time PCR.  Total RNA was extracted from 0.1 g of liver tissue using Trizol Reagent (Invitrogen, USA). 
It was then quantified and the purity was assessed by spectrophotometry. The 260:280 ratios were 1.8 ~ 2.0. 
Complementary DNA (cDNA) was synthesized from 1 mg of total RNA using PrimeScript® RT reagent Kit with 
gDNA Eraser (Takara, Japan). Expressions of the selected genes were analyzed by the real-time PCR, which was 
performed with an ABI 7500 instrument (Applied Biosystems) using SYBR Green PCR (Takara). The Reaction 
mixtures (SYBR® Premix Ex TaqTM II (2×) 10.0 μl, Forward Primer (10 μM) 0.8 μl, Reverse Primer (10 μM) 0.8 μl, 
DNA template 2.0 μl and ddH2O 6.4 μl) were programmed 30 s at 95 °C, followed by 40 cycles of 5 s at 95 °C, 30 s 
at 58 °C, 30 s at 72 °C, and finally 15 s at 95 °C, 1 min at 60 °C and 15 s at 95 °C. For each mRNA, gene expression 
was corrected by β-ACTIN in each sample. The data were analyzed by the ΔΔCt method, and the primers used 
are shown in Table 6.

Western blot analysis.  Tissues were homogenized with glass Tenbroeck tissue grinders (Kimble Chase, 
USA) on ice and lysed with 50 mM Tris·HCl, 150 mM NaCl, 0.5% NP-40, 0.1% SDS, and 1 mM EDTA, pH 7.5, 
with protease and phosphatase inhibitor cocktails (Roche, Switzerland) at 4 °C for 1 h and cleared by centrifu-
gation at 12,000 g for 20 min. Protein concentrations were determined with a BCA protein assay kit (Beyotime 
Biotechnology, China) using bovine serum albumin as standard. Protein samples (30 μg protein per lane) were 
separated by SDS-PAGE and transferred to 0.45 μm PVDF membrane (Millipore, USA) for Western analysis. The 
membrane was blocked with 5% nonfat milk in TBST buffer (20 mM Tris·HCl, 500 mM NaCl, 0.1% Tween 20) for 
1 h at room temperature and incubated with primary antibody overnight at 4 °C before horseradish peroxidase 
(HRP)-conjugated secondary antibodies were added and visualized using ECL reagents (GoodHere, China). The 
following antibodies were used: antibodies against protein kinase B (AKT, 9272), phospho-AKT (Ser473, 9271) 
and β-tubulin (2146) were purchased from Cell Signaling Technology. All these antibodies were developed using 

Primers Forward (5′-3′) Reverse (5′-3′)

SOCS3 TTTCTTCACCCTGTCCGTGC CCAGCCCTTTCCCCATGTAG

JNK1 TGGTCCGGGGTAGTGTGTTG TCTCTGGCTTGGCTCGCTTT

PI3K GCTCATCAACCACTATCGC TGTCTTCTTTCACCACCTG

IRS1 CCCACTTAGGAAAAGCAGAG AGTACAGGAACGGAAGGATC

IRS2 GGAGGTATGGCAAGTGAAT AAGAAGAAGCTGTCGGAGT

AKT1 GAGGGAAGAATGGACGAAAG TTCCCAGGAGTTTGAGGTAT

AKT2 CATCCCTTTCTAACAACACTA CTGTAAACAACATTGCGTGA

GLUT2 GAACAGCACAGAAGAAGAGG ACAGCCAGAACATTGACCAT

PK GCTSGACTACAAGAACATC CTCGTGGTTCTCCAGYTTG

GK GGGATGATTGTTGGCACT TGGAACCTGTCACGGAAA

PFK TTGTAATCGGAGGGTTCG ATTGTTGCTGATGGTGGC

β-ACTIN GGAAATCGTGCGTGACATTAAG CCTCTGGACAACGGAACCTCT

Table 6.  List of PCR primer pairs used for the real-time PCR analysis.
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antigenic regions completely conserved in fish, and could be used in scophthalmidae turbot90. The Western bands 
were quantified using NIH Image 1.63 software.

Calculation and statistical analysis.  The following parameters were calculated as:

= ×Survival rate (SR, %) 100 final fish number/initial fish number (1)

= × − × −Specific growth rate (SGR, %) 100 [(lnfinal body weight lninitial body weight) days (2)1

The PROC NLIN was used to fit exponential curves for glucose concentration during 48 hours GTT, using the 
following equation performed by Metlab2017:

= × − × + × − ×F(t) a exp( b t) c exp( d t); (3)

where F (t) was the metabolite concentration at time t (hour); the method was modified based on Pires et al.91. 
CR (%/h), Cmax (mmol/L), Tbasal (h) and Tmax (h) were calculated as the actual equation. CR was calculated as: 
clearance rate

= − − ×h(CR; %/ ) {(ln[ta] ln[tb])/(tb ta)} 100; (4)

where [ta] was the concentration of glucose at time a (ta), and [tb] was the concentration of glucose at time b (tb). 
The AUC was calculated using the trapezoidal method and actual concentration values, after discounting the 
baseline concentration (FSG, calculated by averaging value before injection)87.

All statistical evaluations were analyzed using the software SPSS 19.0. The growth parameters, immune 
parameters and gene expression were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s 
multiple range tests. The effects of time and diets and their interactions were analyzed by two-way ANOVA. 
Tukey’s multiple range tests were used to examine treatment differences among the interactions. When the inter-
action was significant, the results were further analyzed using one-way ANOVA and Tukey’s multiple range test. 
In case unequal variance was determined by Levene’s test, the data were square root-transformed before statistical 
analysis. Differences were regarded as significant when P < 0.05. All data were expressed as means ± standard 
deviations.

Data availability.  The datasets generated and analysed during the current study are vailable from the corre-
sponding author on reasonable request.
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