
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/373299637

Parallel evolution in Crassostrea oysters along the latitudinal gradient is

associated with variation in multiple genes involved in adipogenesis

Article  in  Molecular Ecology · August 2023

DOI: 10.1111/mec.17108

CITATIONS

2
READS

314

9 authors, including:

Wen Teng

Ocean University of China

5 PUBLICATIONS   13 CITATIONS   

SEE PROFILE

Huiru Fu

Ocean University of China

15 PUBLICATIONS   112 CITATIONS   

SEE PROFILE

Zhuanzhuan Li

Ocean University of China

10 PUBLICATIONS   50 CITATIONS   

SEE PROFILE

Chengxun Xu

Ocean University of China

56 PUBLICATIONS   282 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Wen Teng on 26 August 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/373299637_Parallel_evolution_in_Crassostrea_oysters_along_the_latitudinal_gradient_is_associated_with_variation_in_multiple_genes_involved_in_adipogenesis?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/373299637_Parallel_evolution_in_Crassostrea_oysters_along_the_latitudinal_gradient_is_associated_with_variation_in_multiple_genes_involved_in_adipogenesis?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wen-Teng-5?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wen-Teng-5?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ocean-University-of-China?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wen-Teng-5?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huiru-Fu?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huiru-Fu?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ocean-University-of-China?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huiru-Fu?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhuanzhuan-Li?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhuanzhuan-Li?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ocean-University-of-China?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhuanzhuan-Li?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chengxun-Xu?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chengxun-Xu?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ocean-University-of-China?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chengxun-Xu?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wen-Teng-5?enrichId=rgreq-c1540f7df7b3b956a3abeb70077cd847-XXX&enrichSource=Y292ZXJQYWdlOzM3MzI5OTYzNztBUzoxMTQzMTI4MTE4Mzc3NjM5MEAxNjkzMDIxODQwNTky&el=1_x_10&_esc=publicationCoverPdf


Molecular Ecology. 2023;00:1–12.	 wileyonlinelibrary.com/journal/mec�  | 1© 2023 John Wiley & Sons Ltd.

1  |  INTRODUC TION

It has been suggested that most species appear to evolve by natu-
ral selection ever since Darwin (Coyne & Orr, 2004; Schluter, 2009). 
Closely related populations or species in similar environments are 
expected to have parallel genetic bases to parallel phenotypes. This 

supplies a proper framework to infer the deterministic role natu-
ral selection plays (Elmer & Meyer, 2011). Candidate gene studies 
have provided excellent examples of parallel animal genotype and 
phenotype changes. For instance, frequent mutations targeting the 
melanocortin-1 receptor (Mc1r) gene underlie brown phenotypes 
in geographically separate cavefish (Gross et al.,  2009). Multiple 
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Abstract
Parallel diversification provides a proper framework for studying the role of natural 
selection in evolution. Yet, empirical studies from ecological ‘non-model’ species of in-
vertebrates are limited at the whole genome level. Here, we presented a chromosome-
scale genome assembly for Crassostrea angulata and investigated the parallel genomic 
evolution in oysters. Specifically, we used population genomics approaches to com-
pare two southern–northern oyster species pairs (C. angulata–C. gigas and southern–
northern C. ariakensis) along the coast of China. The estimated divergence time of C. 
angulata and C. gigas is earlier than that of southern and northern C. ariakensis, which 
aligns with the overall elevated genome-wide divergence. However, the southern–
northern C. ariakensis FST profile represented more extremely divergent “islands”. 
Combined with recent reciprocal hybridization studies, we proposed that they are 
currently at an early stage of speciation. These two southern–northern oyster species 
pairs exhibited significant repeatability in patterns of genome-wide differentiation, 
especially in genomic regions with extremely high and low divergence. This suggested 
that divergent and purifying selection has contributed to the genomic parallelism be-
tween southern and northern latitudes. Top differentiated genomic regions shared in 
these two oyster species pairs contained candidate genes enriched for functions in 
energy metabolism, especially adipogenesis, which are closely related to reproductive 
behaviours. These genes might be good candidates for further investigation in vivo. 
In conclusion, our results suggest that similar divergent selection and shared genomic 
features could predictably transform standing genetic variation within one species 
pair into differences in another.
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marine stickleback populations showed independent deletions in a 
Pitx1 enhancer that were found to be associated with the parallel 
reduction in the pelvic girdle (Chan et al., 2010). A derived allele of 
the Ectodysplasin locus has been fixed repeatedly in the parallel evo-
lution of stickleback low-plated phenotypes at most freshwater lo-
cations around the world (Barrett et al., 2008; Colosimo et al., 2005). 
However, the candidate gene approach only focused on a single locus 
and inevitably introduced the ascertainment bias, which may exag-
gerate the genetic parallelism (Elmer & Meyer, 2011). The genome-
wide approaches overcome that limitation and help to assess the 
entire genome to identify many genetic bases for phenotypic par-
allelisms (Elmer & Meyer,  2011). For example, marine threespine 
sticklebacks have independently colonized many freshwater hab-
itats and showed globally shared marine–freshwater divergence, 
including 0.5% of its genome regions and three chromosomal inver-
sions, underlying parallel armour, and body shape evolution (Jones 
et al., 2012). However, most of the experimental and comparative 
work has been conducted between pairs of populations or races 
rather than between pairs of different species.

Many vicariant events in marine animals between southern and 
northern latitudes along the coast of China have been associated 
with Pleistocene sea level changes (Ni et al., 2014; Wang, 1999). Re-
cent population genomic studies have integrated diverse selection 
measures, such as the fixation index (FST) and genetic diversity ratio 
(θπ-Ratio), to explore the divergence between southern and north-
ern shellfish (Li et al., 2018; Li, Li et al., 2021; Wu et al., 2022). How-
ever, these studies have neglected to investigate parallel genomic 
differentiation by utilizing multiple species pairs. This approach may 
offer valuable insights into the adaptive divergence between south-
ern and northern latitudes.

Oysters are one of the widely distributed marine bivalves, har-
bouring more than 20 species in China seas (Guo et al., 2018; Yang 
et al., 2021). Notably, C. angulata and C. gigas are naturally distrib-
uted in the southern and northern waters, respectively (Figure 1). 
They presented similar morphology but different thermotolerance 
and reproductive cycles (Ghaffari et al., 2019; Shi et al., 2019). Es-
tuarine oyster C. ariakensis is another native distributed in the 
estuarine, intertidal environment along the coastline of China (Fig-
ure 1). The southern and northern C. ariakensis represented distinct 
genome-wide variations (Li, Li et al., 2021; Wu et al., 2022). Physi-
ology experiments also revealed that the southern C. ariakensis had 
evolved a higher thermotolerance than the northern C. ariakensis (Li 
et al., 2020). Interpopulation hybrids showed no severe reproductive 
isolation but a significantly low hatching rate between southern and 
northern populations (Qin et al., 2022). These results implied that 
they have evolved into different species. Given all that, these two 
oyster groups (C. angulata–C. gigas and southern–northern C. ariak-
ensis) diverged along a similar latitudinal gradient and appeared to 
have adapted to similar changes in temperature. They would serve 
as a proper framework to study parallel genomics.

In this study, we begin by constructing a high-quality genome for 
C. angulata. Subsequently, we integrate whole-genome resequenc-
ing data from C. angulata, C. gigas, and southern and northern C. 

ariakensis to explore the genomic patterns of divergence and parallel 
speciation. Our findings provide valuable insights into the genomics 
of vicariant speciation in Crassostrea oysters, contributing to a more 
comprehensive understanding of this process.

2  |  MATERIAL S AND METHODS

2.1  |  Genome assembly and annotation

A wild female Fujian oyster (Portuguese oyster), C. angulata, was 
sampled from Ningde, China. Genomic DNA was extracted from ad-
ductor muscle using the TIANamp Marine Animals DNA Kit. Total 
RNA was extracted from the adductor muscle, mantle, gill, and di-
gestive gland using the Trizol reagent (Thermo Fisher Scientific). 
Subsequently, an Iso-Seq library was constructed from the pooled 
RNA using the SMRTbell prep kit 3.0 for sequencing on the PacBio 
Sequel II System. To estimate the genome size and complexity, we 
constructed a 150 bp paired-end library using the NEBNext Ultra 
DNA Library Prep Kit and subsequently sequenced it on the Illumina 
Hiseq Xten platform. Raw reads were filtered using fastp v0.20.1 
(Chen et al., 2018). Bases with a mean quality lower than 20 in the 
sliding window were removed. Additionally, a minimum read length 
of 36 was required, and five bases at the front of both read1 and 
read2 were also discarded. Genome size and complexity were esti-
mated with Jellyfish (Marçais & Kingsford, 2011) and GenomeScope 
(Vurture et al., 2017). To perform a chromosome-level genome as-
sembly, we first constructed a SMRTbell library using the SMRT-
bell prep kit 3.0 and sequenced it on the PacBio Sequel II System. 

F I G U R E  1  The oyster species range (modified and redrawn from 
various sources; Li et al., 2018; Li, Dai et al., 2021, Li, Li et al., 2021; 
Vaschenko et al., 2013; Wang, 2004; Wu et al., 2022). Blue dots 
represent Crassostrea angulata; Red dots represent Crassostrea 
gigas; Purple dots represent southern Crassostrea ariakensis; Orange 
dots represent northern Crassostrea ariakensis. The annual SST 
data for the year 2018 was downloaded from Ocean Data View 
(Schlitzer, 2018).
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    |  3TENG et al.

Additionally, a Hi-C library was prepared using the Dovetail™ Hi-C 
Library Preparation Kit and sequenced on the Illumina Hiseq Xten 
platform. The primary genome was initially performed with hifiasm 
v0.16 using default parameters (Cheng et al., 2021). Subsequently, 
the haploid sub-assembly was reconstructed using HaploMerger2 
(Huang et al., 2017). Finally, the chromosome-level assembly for C. 
angulata was accomplished using Juicer v1.6 with default parameters 
(Durand et al., 2016). We accessed the genome assembly complete-
ness using BUSCO v5.1.3 (Simão et al.,  2015) with the “mollusca_
odb10” BUSCO gene set collection (Waterhouse et al., 2018).

Transposable elements de novo prediction and homology 
searching were performed by RepeatModeler v2.0.3 and Repeat-
Masker v4.1.1 pipeline (Chen, 2004). Alignment assembly was first 
completed using transcriptome data by PASA pipeline v2.5.1 (Haas 
et al., 2003). The genome was also annotated by MAKER v3.01.03 
(Cantarel et al., 2008). Specifically, the initial MAKER analysis em-
ployed the empirical transcript of C. angulata and protein models 
from bivalves, including C. gigas, Crassostrea virginica, Saccostrea 
glomerata, Pinctada fucata, and Mizuhopecten yessoensis. Gene mod-
els were trained by AUGUSTUS v 3.4.0 (Stanke et al.,  2008) and 
SNAP (Johnson et al., 2008). We finally ran three rounds of MAKER 
annotation with 92.2% of the gene models having an annotation edit 
distance (AED) of 0.5, and the returns started diminishing thereaf-
ter. Predicted genes were functionally annotated with Nr, Uniport, 
Swiss-Prot, and COG databases using BLAST (Camacho et al., 2009) 
with an E-value cutoff of 1e-10.

2.2  |  Phylogenetic analysis of southern–northern 
oyster species

Crassostrea angulata settled in southern China with an annual aver-
age sea surface temperature (SST) above 20°C (Figure 1). Its closest 
species, C. gigas, settled in northern China with an annual average 
SST lower than 20°C (Figure 1). The estuarine oysters, C. ariakensis, 
settled in southern and northern China, including the Yangtze River 
mouth (Figure 1). Here, whole-genome sequencing (WGS) data of C. 
angulata (21 samples) and C. gigas (472 samples) were downloaded 
from the Sequence Read Archive (SRA) database under accession 
numbers PRJNA394055 (Li et al., 2018). WGS data of C. ariakensis 
(69 southern samples and 192 northern samples) was downloaded 
from the SRA database under accession numbers PRJNA715058 
(Wu et al., 2022).

Since the southern C. ariakensis genome assembly is unavail-
able, we utilized mitochondrial DNA sequences to estimate the 
divergence time, commonly employed in oyster molecular phylo-
genetics (Guo et al.,  2018). Specifically, WGS reads of 69 south-
ern and 192 northern C. ariakensis individuals were mapped to C. 
ariakensis genome assembly with accession GCA_020458035.1 
(Wu et al., 2022), comprising only 10 primary super scaffolds. Un-
mapped reads were extracted for de novo assembly by SPAdes 
v3.15.4 (Prjibelski et al., 2020). Then, a BLASTN-algorithm (Cama-
cho et al., 2009) based search using a cytochrome c oxidase subunit 

1 (COX1) nucleotide sequences, downloaded from NCBI with ac-
cession number FJ841964.1, as a query was conducted. The aligned 
subject sequence was finally extracted and translated into protein 
sequences using our custom Python scripts (https://github.com/
tengw​en201​8/Paral​lel_evol_oyste​rs_Asia/blob/main/Part2.Phylo​
genet​ic_analy​sis/cds2p​rot.py). Similarly, WGS data of 21 C. angulata 
and 472 C. gigas were mapped to our C. angulata reference genome, 
which comprises only 10 primary scaffolds. Unmapped reads were 
extracted for the de novo assembly. The COX1 nucleotide sequence, 
downloaded from NCBI with accession number NC_012648.1, was 
used as a query to extract the COX1 sequence for each sample. 
Next, multiple alignments were performed in each southern and 
northern oyster species pair with MUSCLE v3.8.31 (Edgar,  2004). 
Pairwise Kimura 2-parameter (K2P) distances were calculated with 
the DNADIST program (Felsenstein, 1988). Two samples from C. an-
gulata and C. gigas with median K2P values were randomly selected. 
Two samples from northern and southern C. ariakensis with me-
dian K2P values were chosen randomly. One COX1 gene sequence 
of C. virginica was downloaded from NCBI with accession number 
MN817966.1 and served as an outgroup. To construct phylogenetic 
relationships, COX1 gene sequences from all five species were used 
for multiple alignment analysis with MUSCLE v3.8.31 (Edgar, 2004). 
Then the phylogenetic tree was estimated using RaxML v.8.2.12 
(Stamatakis, 2014). Finally, the divergence time was estimated using 
MCMCTree from PAML v.4.9 (Yang, 2007) with main parameters of 
‘RootAge=<90 model=HKY85 alpha=0.969 clock=2’ and calibra-
tion time between C. angulata and C. virginica: minimum = 63 Ma and 
soft maximum = 83 Ma.

The estimation of the divergence time was also performed using 
SNAPP (SNP and AFLP Package for Phylogenetic analysis; Bryant 
et al.,  2012) with SNP data. Specifically, one sample per species 
was employed, including C. angulata, C. gigas, southern C. ariakensis, 
northern C. ariakensis, and C. virginica (Puritz et al., 2023). The cal-
ibration divergence of C. virginica and C. angulata was estimated at 
73 Ma (Plazzi & Passamonti, 2010; Ren et al., 2010).

2.3  |  Genome-wide divergence of southern–
northern oyster species

Variation calling was performed on 21 C. angulata and 472 C. gigas 
WGS data to study the genome-wide divergence using our C. angu-
lata reference genome. Variation calling of C. ariakensis (69 south-
ern samples and 192 northern samples) was performed with the C. 
ariakensis reference genome with the GenBank assembly accession 
number GCA_020458035.1 (Wu et al., 2022).

Specifically, WGS raw reads were filtered and trimmed using fastp 
v0.20.1 (Chen et al., 2018). Bases with a mean quality lower than 20 in 
the sliding window were removed. Additionally, a minimum read length 
of 36 was required, and five bases at the front of both read1 and read2 
were also discarded. Clean reads were mapped to genome reference 
using BWA v0.7.17 with default parameters (Li & Durbin, 2009). SNP 
calling was performed using VCFtools v0.1.16 (Danecek et al., 2011). 
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SNPs retained in the following analysis were filtered by the following 
criterion: called in more than 90% of samples; with minor allele fre-
quency ≥ 0.1; a quality score of more than 30; and a mean depth of 
more than 10 but less than 50. To clarify the population structure, prin-
cipal components analysis (PCA) was performed using PLINK v1.9 with 
the main parameter (−indep-pairwise 50 10 0.1; Purcell et al., 2007). 
And individual ancestries were estimated using ADMIXTURE (Alexan-
der et al., 2009). Population admixture graphs within C. ariakensis were 
inferred using TreeMix (Pickrell & Pritchard, 2012).

To exclude the effect of sampling size in population genomic 
analysis, we randomly selected 20 specimens of C. angulata and 20 
specimens of C. gigas to calculate FST, repeating this process 100 
times. Similarly, we randomly sampled 20 southern C. ariakensis 
specimens and 20 northern C. ariakensis specimens to calculate 
FST, repeating the procedure 100 times. Specifically, per-site FST 
and sliding-window FST were calculated using VCFtools v0.1.16 
(Danecek et al., 2011) and custom scripts written by Simon Mar-
tin (Martin, 2022), respectively. Sliding window FST was measured 
with a window size of 2 kb that was sliding by 2 kb and requested 
these windows to have a minimum number of 10 sites covered. To 
evaluate the role of linkage disequilibrium in a selective sweep, the 
integrated haplotype homozygosity score (iHS; Voight et al., 2006) 
was calculated within these two southern–northern oyster pairs 
using rehh version 3.2.2 (Gautier & Vitalis,  2012). Meanwhile, 
we estimated the synonymous substitution rate (ds) as a proxy 
for the mutation rate (Baer et al.,  2007) using SNPGenie (Nel-
son et al.,  2015) with whole-genome variants for each species's 
sample.

2.4  |  Repeatability in genomic patterns: 
Quantile approach

To investigate the parallel genomic evolution along the similar latitu-
dinal gradient, we first selected two southern–northern oyster spe-
cies pairs as the foreground. Specifically, we utilized WGS data from 
21 C. angulata, 21 C. gigas, 69 southern C. ariakensis, and 69 northern 
C. ariakensis, and mapped them to our C. angulata genome assembly. 
FST values were calculated using sliding window (2 kb windows) as 
described earlier. Subsequently, we calculated the Pearson correla-
tion coefficient of FST values between the C. angulata–C. gigas pair 
and the southern–northern C. ariakensis pair. Secondly, we selected 
two subgroups of the northern C. ariakensis as the background. We 
named one of the subgroups of northern C. ariakensis Shandong C. 
ariakensis and the other one Shanghai C. ariakensis. They were dis-
tributed in and above the northern regions of the Yangtze River 
mouth and experienced similar temperature conditions (Figure  1). 
Specifically, WGS data of 29 Shandong C. ariakensis and 29 Shanghai 
C. ariakensis were mapped to our C. angulata genome, and FST was 
calculated within 2 kb windows, subsequently. Subsequently, we cal-
culated the Pearson correlation coefficient of FST values between 
the C. angulata–C. gigas pair and the Shandong–Shanghai C. ariak-
ensis pair.

The quantile approach was performed as described in the litera-
ture (Renaut et al., 2014). Specifically, genomic regions were ranked 
according to FST for each species pair and split into 20 quantiles. The 
first quantile comprises the most divergent regions, while the 20th 
quantile includes the least divergent regions. Next, observed shared 
windows per quantile were compared using BEDTools v2.29.2 
(Quinlan & Hall,  2010) between oyster species pairs. Expected 
shared regions per quantile were calculated with the formula of 
5% × 5% × the total number of polymorphic genomic regions. Genes 
closest to the shared genomic regions, along with a 3 kb region up-
stream and downstream, within the first quantile, were utilized for 
a Gene Ontology (GO) analysis using the clusterProfiler R package 
(Yu et al., 2012).

3  |  RESULTS

3.1  |  Genome assembly of C. angulata and 
annotation

Three sequencing and assembly technologies were integrated to 
perform the de novo assembly. Firstly, the genome of C. angulata 
was sequenced with 64-fold coverage of 150 bp Illumina paired-end 
sequencing reads to estimate the genome size and complexity. The 
C. angulata genome has a high level of heterozygosity (2.6%), and the 
genome size was estimated at 548 megabases (Mb). Then, 76.3-fold 
coverage of HiFi reads from the Pacific Biosciences Sequel II system 
was assembled into 372 contigs with a contig N50 of 12 Mb. Lastly, 
97.7-fold coverage of the Hi-C library was employed to help generate 
a chromosome-level assembly, and the final genome assembly of C. 
angulata comprised 624 Mb with scaffold N50 of 60 Mb (Figure S1a). 
Genome assembly completeness and sequence accuracy assessment 
of the genome in this study showed that >99.0% of the 5295 genes 
were complete, and 98.1% occurred as single-copy genes.

Repeat elements constituted 49.67% of the C. angulata genome 
and were distributed unevenly along the chromosomes (Figure S1b), 
where DNA transposons (19.04%) and rolling-circle transposons (He-
litrons) (13.2%) predominate. In contrast, retroelements [including 
long interspersed nuclear element (LINE), long terminal repeat (LTR), 
and short interspersed nuclear element (SINE)] constitute a minor 
portion of the genome (5.81%) (Table S1). Gene annotation was per-
formed based on a strategy combining homology searches, de novo 
gene prediction, and isoform sequencing (Iso-Seq). A total of 29,608 
protein-coding gene models were predicted (Table S2).

3.2  |  Phylogenetic divergence of southern–
northern oyster species pairs

Based on the mitochondrial COX1 sequence, the C. angulata–C. gigas 
species pair has a divergence of 1.9%–2.7% with a mean value of 
2.3% [measured by Kimura 2-parameter (K2P) distances; Figure S2a]. 
However, the average K2P distance of the C. ariakensis south–north 
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population pair is 0%–2.4% with a mean value of 0.6% (Figure S2b). 
The point of divergence between the C. gigas–C. angulata pair and the 
southern–northern C. ariakensis pair was estimated to be 29 Mya (Fig-
ure 2). The divergence time estimation between C. gigas and C. angu-
lata is 3.6 Mya, earlier than that of 0.98 Mya between southern and 
northern C. ariakensis (Figure 2). The estimation of divergence time 
between these two southern–northern oyster species pairs using 
SNP data was much shorter than that using the COX1 sequences 
(Figure S3). Despite this, the divergence of southern and northern C. 
ariakensis was still later than that of C. gigas and C. angulata.

3.3  |  Genome-wide islands of speciation of 
southern–northern oyster species

Principal component analysis (PCA) revealed a pronounced popu-
lation structure between southern and northern oyster species 
(Tracy-Widom statistics: p < 1 × 10–200; Tracy & Widom, 1994). In 
the southern–northern C. ariakensis pair, southern and northern in-
dividuals were clearly separated by the first eigenvector (Figure 3a). 
Similarly, individuals from C. angulata and C. gigas formed distinct 
clusters (Figure 3b). ADMIXTURE analysis showed genetic clusters 
are similar to the result of PCA analysis (Figure S4). Considering the 
C. angulata and C. gigas pairs, the ADMIXTURE cross-validation ap-
proach chose the K parameter of 3 or 4 with the lowest error (Fig-
ure S4b). There is no admixture between C. angulata and C. gigas in 
these situations (Figure S4b). However, recent hybrids seem to be 
ubiquitous within C. gigas (Figure S4a). Considering the southern–
northern C. ariakensis pair, the ADMIXTURE cross-validation ap-
proach chose the K parameter of 3 with the lowest error (Figure S4d). 
The northern C. ariakensis has diverged not only from the southern 
C. ariakensis but has also divided into two distinct subgroups (Fig-
ure S4c). One includes samples from Shanghai. The other includes 
samples from Shandong (Figure 1). A little gene flow from the south-
ern C. ariakensis into the Shanghai C. ariakensis is observed when 
K = 2. This may be due to an admixture event in history (Figure S5).

Genome-wide FST profiles clearly display demarcated “islands” 
of high differentiation in both the south–north oyster species pairs 

(Figure  3c and Table  S3). Comparisons between C. angulata and 
southern C. ariakensis and between C. gigas and northern C. ariakensis 
revealed consistently high FST patterns (Figure S6). After performing 
100 repetitions of FST calculations with randomly selected samples, 
we observed that the standard deviations (SD) of the median, the 
95th, and the 99th percentiles of FST were less than 0.003. Based on 
this analysis, the median FST in the C. angulata–C. gigas pair is 0.06, 
higher than that of 0.04 in the southern–northern C. ariakensis pair 
(Table S3; p < .05). However, the 95th and 99th percentiles of FST in 
the C. angulata–C. gigas pair are 0.28 and 0.44, lower than the 95th 
and 99th percentiles of FST of 0.48 and 0.72 in the southern–northern 
C. ariakensis pair (Table S3; p < .05). For single sites, the maximum FST 
value of the C. angulata–C. gigas species pair is 5.4 SD above the mean, 
and 49,495 sites have an FST over 3 SD above the mean. The maxi-
mum FST of the southern–northern C. ariakensis pair is 4 SD above the 
mean, and an even greater number of sites, 131,082, have an FST over 
3 SD above the mean (p < .05). Overall, the southern–northern C. 
ariakensis pair exhibits fewer genomic regions with moderate FST but 
a greater number of genomic regions with extremely low and high FST 
values compared to the C. angulata–C. gigas species pair (Figure 3d). 
Besides, SNPs with high iHS in one species but low iHS in another 
are likely to show elevated FST in both the southern–northern oys-
ter species pairs (Figure S7). Furthermore, the rate of synonymous 
mutation per synonymous site (ds) in C. ariakensis species is 0.008, 
which is higher than that of C. angulata or C. gigas, which is 0.006 
(p < .05). In the southern–northern C. ariakensis species pair, the Pear-
son correlation coefficient between ds and FST is 0.2 (p < .05). In the 
C. angulata–C. gigas species pairs, the Pearson correlation coefficient 
between ds and FST is 0.055 (p < .05; Figure S8).

3.4  |  Repeatability in genomic patterns and genes 
in response to parallel selection

Because of the genome-wide differentiation and inhabiting the north-
ern waters with similar temperatures, the Shandong–Shanghai C. ari-
akensis pair served as a background to investigate parallel genomic 
divergence between southern and northern oyster species. Based on 
strict criteria, 2,847,615, 1,219,101, and 1,086,786 SNPs were de-
tected for C. angulata–C. gigas, southern–northern C. ariakensis, and 
Shandong–Shanghai C. ariakensis, respectively. We observed the Pear-
son's correlation coefficient of 0.11 (p < 2.2e-16) for C. angulata–C. 
giga versus Shandong–Shanghai C. ariakensis (Figure  S9) and 0.25 
(p < 2.2e-16) for C. angulata–C. giga versus southern–northern C. ari-
akensis (Figure 4a). Genomic regions with extremely high and low aver-
age FST estimates were more likely to be shared than genomic regions 
with modest average FST estimates (Figure 4b). Significant quadratic 
relationships between the 20 quantiles and the ratio of observed ver-
sus expected shared genomic regions were identified in C. angulata–C. 
gigas versus southern–northern C. ariakensis (Figure 4b, p = 7.8e-07). 
Additionally, the most divergent regions exhibited high iHS in the 
southern species but low iHS in the northern species (Figure  S10). 
Sixty-eight genes closest to these most divergent shared regions (top 

F I G U R E  2  A phylogenetic relationship of five Crassostrea oyster 
species. Divergence time was estimated with a relaxed molecular 
clock Bayesian method. Crassostrea virginica served as an outgroup.
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5%) were utilized for a GO analysis. Among these, 21 genes were sig-
nificantly enriched in 21 GO terms (Q < 0.05; Figure 4c and Table S4). 
And most of these enriched terms were related to four clusters: ‘gly-
colytic process’, ‘lipid metabolic process’, ‘fat cell differentiation’, and 
‘circadian rhythm’ (Figure 4c and Table S4).

4  |  DISCUSSION

Crassostrea oysters constitute a collection of recent divergence and 
vicariant speciation events along the coast of China (Guo et al., 2018). 
Among these events, two southern–northern species pairs (C. angu-
lata–C. gigas and southern–northern C. ariakensis) exhibit local ad-
aptation to a similar climate gradient. The speciation status remains 
controversial, especially in the southern–northern C. ariakensis pair. 

Moreover, the availability of large-scale whole-genome sequenc-
ing data and genome scans permits the investigation of the parallel 
genomic changes underlying local adaptation to southern and north-
ern latitudes. In this study, we first present a viewpoint that suggests 
the southern and northern C. ariakensis are in an early stage of specia-
tion. Secondly, we demonstrate the genomic parallelism and its poten-
tial causes between the two southern–northern oyster species pairs.

4.1  |  The early stage of allopatric speciation in the 
southern–northern oyster species

The Pacific oyster C. gigas and Fujian oyster C. angulata are native 
species in northern and southern China's coastal waters (Figure 1). 
They used to be considered the same species (Huvet et al., 2002; 

F I G U R E  3  Genome-wide divergence of southern and northern oysters (a) PCA of genetic variation within the southern–northern C. 
ariakensis pair. (b) PCA of genetic variation within the C. angulata–C. gigas species pair. (c) Absolute standard scores of southern–northern C. 
ariakensis divergence (blue) and C. angulata–C. gigas divergence (red) overlaid on the divergence between southern and northern C. angulata 
(purple), and northern C. ariakensis and C. gigas (black). (d) Density plot of sliding-window-based FST for C. angulata–C. gigas (pink) and 
southern–northern C. ariakensis (cyan) divergence. The C. angulata–C. gigas species pair has more genomic regions with moderate FST values, 
whereas the southern–northern C. ariakensis exhibits a greater number of genomic regions with extremely low and high FST values, which are 
highlighted with black arrows.
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    |  7TENG et al.

Menzel, 1974). However, the differing physiological characteristics 
(Ghaffari et al.,  2019; Haure et al.,  2003), the mitochondrial DNA 
differentiation (Figure  S2a), the genome-wide differentiation (Fig-
ure  3b and Figure  S4a), and ecological reproductive isolation (Li, 
Dai et al.,  2021) tend to divide they into two sister species (Guo 
et al., 2018). The Suminoe oyster, C. ariakensis, is another native oc-
curring along China's coast (Figure 1). Estimation of divergence time 
revealed that the southern and northern C. ariakensis pair diverged 
at a more recent date compared to the C. gigas and C. angulata pair 

(Figure  2 and Figure  S3). Their taxonomic status was previously 
clarified as the same species (Li et al.,  2020). However, reciprocal 
transplant experiments have demonstrated ecological reproduc-
tive isolation between the southern and northern C. ariakensis (Li 
et al., 2020). Moreover, the C. angulata–C. gigas species pair showed 
no significant differences (p > .05) in the fertilization rate and hatch-
ing rate between interspecific hybrids and intraspecific inbreeds 
(Huvet et al.,  2002; Jiang et al.,  2021). In contrast, the fertiliza-
tion and hatching rate of interspecific hybrids is significantly lower 

F I G U R E  4  Parallel genomic divergence. (a) Scatterplot displaying correlation of genomic divergence between the C. angulata–C. gigas 
species pair and the southern–northern C. ariakensis species pair. (b) Genomic repeatability patterns quantified with respect to FST at 
the genomic level (2 kb windows). The left end part of the quadratic relationship represents those genomic regions with extremely high 
divergence in two southern–northern oyster species pairs that are likely to be shared. The right end of the quadratic relationship represents 
those genomic regions with extremely low divergence in these two southern–northern oyster species pairs that are also likely to be shared. 
(c) Enrichment Map for significantly enriched GO terms (Q < 0.05). The level of overlap between GO enriched terms is indicated by the 
thickness of the edge between them. The size of the node indicates the gene numbers for the term, and the colour of the node indicates the 
enrichment Q-value of the Go term.
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8  |    TENG et al.

(p < .05) than that of intraspecific inbreeds in the southern–northern 
C. ariakensis pair (Qin et al., 2022). To some extent, these results in-
dicate that the southern and northern C. ariakensis have undergone 
speciation accompanied by the development of intrinsic postzygotic 
barriers.

In this study, genome scans revealed “islands” of differentiation 
across the genome in southern - northern oyster species pairs (Fig-
ure 3c and Figure S4), like many other observed cases (Hohenlohe 
et al.,  2010; Jones et al.,  2012; Lawniczak et al.,  2010; Malinsky 
et al.,  2015). Interestingly, our data uncovered that the C. angula-
ta–C. gigas pair exhibits more genomic regions with moderate FST 
values, while the southern–northern C. ariakensis pair exhibits a 
greater number of genomic regions with extremely low and high FST 
values (Figure 3d and Table S3). According to the genome hitchhiking 
(GH) theory, genomic islands under selection from the start of the 
speciation process remained highly differentiated, whereas other 
putatively neutral ones have steadily increased in divergence (Feder 
et al., 2012). The higher occurrence of genomic regions with mod-
erate differentiation (FST) in the early differentiated C. angulata–C. 
gigas pair could be attributed to GH effects. On the other hand, the 
greater number of genomic regions with extremely high differenti-
ation (FST) in the southern–northern C. ariakensis species pair may 
be influenced by the increased mutation rate and its positive cor-
relation with genomic divergence (FST) (Figure S8). Additionally, it is 
essential to explore other potential contributing factors, such as di-
vergent selection introduced by estuarine environments. Moreover, 
the relationship between these extremely divergent “islands” and 
intrinsic postzygotic barriers in the southern–northern C. ariakensis 
species pair is worth further study.

Above all, we suggested that the southern–northern C. ariakensis 
species pair may have evolved at a relatively later stage of speciation 
and could have a higher speciation rate than the C. angulata–C. gigas 
species pair.

4.2  |  Parallel genomic divergence between 
southern–northern oyster species pairs

Closely related lineages in a common landscape often face similar se-
lective pressure, which may lead to parallel phenotypic and genetic 
changes (Cresko et al., 2004; Elmer & Meyer, 2011; Jones et al., 2012; 
Pearse et al., 2014; Pearse & Pogson, 2000; Renaut et al., 2014; Wa-
ples et al., 2004). The C. angulata–C. gigas and southern–northern C. 
ariakensis species pairs have diverged independently along a similar 
latitudinal gradient (Figures  1 and 2). As such, they have presum-
ably experienced similar selective pressure introduced by the gradi-
ent of solar energy, temperature, and nutrients (Rohde, 1992). Here, 
we predicted and confirmed that the pattern of repeatability was 
higher between the oyster species pairs that have diverged along 
the similar latitudinal cline than that in the background (Figure 4a 
and Figure S9). Moreover, the GO analyses also confirmed that bio-
logical processes related to circadian rhythm were overrepresented 
among the genes closest to the highly divergent shared regions in C. 

angulata–C. gigas versus southern–northern C. ariakensis (Figure 4c). 
The regions with low divergence shared by the species pairs have 
been interpreted as being affected by purifying selection (Renaut 
et al.,  2014). While highly divergent regions are often associated 
with divergent selection, shared ancestral polymorphism or recom-
bination rate variation could also contribute to similar patterns (Nosil 
et al., 2009; Renaut et al., 2013, 2014; Sodeland et al., 2016). As hap-
lotypes are expected to be longer in regions of low recombination 
than in regions of high recombination, we analysed the iHS statistic 
between the southern–northern oyster species pairs to assess the 
role of linkage disequilibrium (Voight et al., 2006). Subsequently, a 
certain relationship between iHS and FST is observed both in the C. 
angulata–C. gigas and the southern–northern C. ariakensis species 
pairs (Figure S7). Moreover, the genomic regions showing high paral-
lel divergence tend to have contrasting iHS values between southern 
and northern oyster species (Figure S10). Therefore, the patterns of 
genomic repeatability between the southern and northern latitudes 
in oysters may also be attributed to the shared recombination het-
erogeneity. Besides, the elevated mutation rate is also believed to 
play a crucial role in adaptive evolution, as it increases the supply of 
beneficial mutations (Losos, 2010; Raynes & Sniegowski, 2014). The 
southern and northern oyster species have evolved with reduced 
gene flow due to geographic isolation. As a result, the variability in 
mutation rate is expected to have influenced their divergence. In-
deed, in the southern–northern C. ariakensis species pair, the rate of 
synonymous divergence (ds), a proxy for the neutral mutation rate 
(Baer et al., 2007), displayed a positive correlation with the genomic 
divergence (FST). However, this correlation was extremely weak in 
the C. angulata–C. gigas species pairs (Figure S8). It implied that mu-
tation rate may play a relatively minor role in the genomic parallel-
ism, but further investigations are warranted.

Oysters are broadcast-spawning marine organisms with 
environment-dependent reproductive behaviours. Northern oys-
ter species, like C. gigas, naturally have one reproductive cycle per 
year (Liu et al., 2020). While some southern oyster species, like C. 
angulata, naturally have multiple reproductive cycles per year with 
the prolonged spawning season and rapid gonad maturation and 
recovery (Shi et al., 2019). Energy metabolism in marine bivalves is 
closely associated with reproductive activities (Hassan et al., 2018; 
Li et al., 2006). In the process of oyster oogenesis, the triglyceride in-
creases with the course of sexual maturation and has been regarded 
as a source of energy and a temporary polyunsaturated fatty acid 
reservoir (Li et al., 2000). While glycogen decreases with the course 
of sexual maturation, and some of it might be converted to triglycer-
ide as a yolk lipid in the ovary (Li et al., 2000).

Here, we found that numerous genes involved in adipogene-
sis and glycolysis are under parallel selection in oysters between 
northern and southern latitudes (Figure  4c). Among these genes 
involved in adipogenesis, 5′-AMP-activated protein kinase catalytic 
subunit alpha-2 (PRKAA2) (Figure  S11l), stearoyl-CoA desaturase 
(SCD) (Figure  S11i), and elongation of very long chain fatty acids 
protein 5 (ELOVL5) (Figure  S11d) are three key genes in lipid an-
abolic pathway. Specifically, PRKAA2 is the catalytic subunit of 
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AMP-activated protein kinase (AMPK), an energy sensor protein ki-
nase that negatively modulates the first committed step of the fatty 
acid synthesis by phosphorylating acetyl-CoA carboxylase (ACC) 
(Davis et al.,  2000; Hardie,  2007; Munday & Hemingway,  1999). 
SCD catalyses the rate-limiting step for converting saturated fatty 
acids (SFA) into monounsaturated fatty acids (MUFA) (Paton & 
Ntambi, 2009). ELOVL5 catalyses the first and rate-limiting reac-
tion of the four reactions in the elongation cycle of long-chain fatty 
acids (Liu et al.,  2013; Sassa & Kihara,  2014; Zhang et al.,  2018). 
Among these genes under parallel selection and involved in gly-
colysis, PRKAA2 activates catabolic processes by phosphorylat-
ing phosphofructo-2-kinase, a rate-limiting enzyme in glycolysis 
(Bando et al., 2005). Midnolin (MIDN) (Figure S11i) plays a role in 
inhibiting the activity of glucokinase, which controls the first step 
of glycolysis (Hofmeister-Brix et al.,  2013). Besides, other genes 
involved in insulin secretion and circadian rhythm indirectly regu-
late lipid and glucose metabolisms (Acosta-Rodriguez et al., 2021; 
Saltiel & Kahn,  2001). The present results suggested that natural 
selection and local genomic landscape tend to act on multiple genes 
involved in the same pathway, leading to polygenic adaptation (Bar-
ghi et al., 2020). These differentiated genes associated with cellular 
energy metabolism, especially adipogenesis, might play roles in the 
distinct reproductive behaviours adapted to southern or northern 
waters. These genes stand out as promising targets for further in-
vestigation in vivo.

5  |  CONCLUSIONS

We integrated genomic data and previous reciprocal hybridization 
studies to elucidate the speciation status in two southern–northern 
oyster species pairs. Grounded in these observations, we provided 
evidence that parallel genomic changes could occur within well-
differentiated species. This genomic parallelism may be attributed to 
similar natural selection as well as shared genomic features. Numer-
ous genes involved in cellular energy metabolisms, especially adi-
pogenesis, emerge as potential candidates under parallel selection. 
The hypothetical effects of these differentiated loci on reproductive 
behaviour differentiation between southern and northern oyster 
species are worth further investigation.
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