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Abstract: The complete mitogenomes of Pinctada albina and Pinctada margaritifera were sequenced in
this study, with sizes of 23,841 bp and 15,556 bp, respectively. The mitochondrial genome analysis of
eight Pterioidea species indicated the existence of gene rearrangements within the superfamily. The
ATP8 gene was not detected in the two new mitogenomes, and rrnS was found to be duplicated in
P. albina’s mitogenome. The reconstructed phylogeny based on mitogenomes strongly supported the
monophyly of Pterioidea and provided robust statistical evidence of the phylogenetic relationships
within Pteriomorphia. The analysis of the mitochondrial gene order revealed that of P. margaritifera
to be the same as the ancestral order of Pterioidea. The gene orders of the Pterioidea species
were mapped to the phylogenetic tree, and the gene rearrangement events were inferred. These
results provide important insights that will support future research, such as studies extending the
evolutionary patterns of the gene order from P. margaritifera to other species and determining the
evolutionary status of Pterioidea within the infraclass Pteriomorphia.

Keywords: mitochondrial genome; pearl oyster; phylogeny; Pinctada albina; Pinctada margaritifera

Key Contribution: The gene rearrangement analysis of Pterioidea indicated the gene order of
P. margaritifera as the most ancestral character. Different gene rearrangement events within Pterioidea
were inferred.

1. Introduction

The complete mitochondrial genome has been widely used as a reliable phylogenetic
marker due to its abundance in animal tissues, the strict orthology of encoded genes [1,2],
and the presence of genes and regions evolving at different rates [3,4]. Initial assumptions
regarding uniparental inheritance and the absence of recombination have been overturned
in some studies [5,6]. In some molluscan mitogenomes, the existence of doubly uniparental
inheritance patterns [7–11], wide variations in gene size [12,13], radical genome rearrange-
ments [14–16], and gene duplications and losses [17–19] have been found. Compared
with nuclear genes, the substitution rates of mitochondrial genes are much higher and can
provide more phylogenetic information [20–22]. In addition, mitochondrial genes have
been widely used to analyze genetic diversity [23,24] and population genetic variability
in bivalves [25–27]. Although the animal mitochondrial gene order remains relatively
conserved during long periods of evolution [6,28,29], recent studies have revealed a large
number of gene rearrangement events in mitogenomes belonging to different animal
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groups [30–32]. The comparison of animal mitochondrial gene arrangements has become
a very powerful tool for inferring ancient evolutionary relationships, as rearrangements
appear to be unique, generally rare events that are unlikely to arise independently in
separate evolutionary lineages [33,34].

Pterioidea is classified in the order Ostreida and infraclass Pteriomorphia [35]. The
members of Pterioidea are mainly distributed in tropical and subtropical regions of the
world [36]. The infraclass Pteriomorphia contains four orders (Ostreida, Arcida, Mytilida,
and Pectinida) including 17,422 extant species, among which 818 species belong to Pte-
rioidea (https://www.marinespecies.org (accessed on 22 August 2023)). To date, there
are only seven complete mitochondrial genomes of Pterioidea available on GenBank. The
limited molecular data have restricted the understanding of the mitogenome evolution and
phylogenetic relationships of this superfamily. In addition, the phylogenetic position of
Pterioidea within Pteriomorphia has been controversial [37–41].

In this study, we sequenced the complete mitogenomes of two pearl oysters, Pinctada
albina and Pinctada margaritifera. Based on the published mitogenomes and the two newly
determined ones, our aims were as follows: (1) to explore the gene rearrangements within
Pterioidea, (2) to reconstruct their phylogenetic relationship, and (3) to determine the
phylogenetic position of Pterioidea within Pteriomorphia.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

The specimen of P. albina was sampled from Wuzhizhou Island (18.3138◦ N, 109.7731◦ E)
in December 2021. The specimen of P. margaritifera was collected in Changjiang, Hainan
Province (19.5311◦ N, 108.9576◦ E), in April 2022. The adductor muscle of the specimens
was fixed and preserved in 95% ethanol in the Laboratory of Economic Shellfish Genetic
Breeding and Culture Technology (LESGBCT), Hainan University. The total genomic DNA
was extracted from the adductor muscle using a TIANamp Marine Animals DNA Kit
(Tiangen, Beijing, China) following the manufacturer’s protocol. DNA quality was assessed
via agarose gel electrophoresis.

2.2. Mitochondrial Genome Sequencing and Assembly

Qualified samples were submitted to Novogene (Beijing, China) for library construc-
tion and high-throughput sequencing. Sequencing libraries were obtained using the NEB
Next Ultra™ DNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) following
the manufacturer’s instructions, with average insert sizes of approximately 300 bp and
sequenced as 150 bp paired-end runs on the Illumina NovaSeq 6000 platform. Finally,
approximately 8 Gb of raw data were generated for each library. The clean data were
obtained from each library after filtering and trimming using Trimmomatic [42] and then
imported into Geneious Prime [43] software for mitogenome assembly.

2.3. Mitogenome Annotation and Sequence Analysis

The two mitogenomes were initially annotated with the MITOS webserver [44] using
the invertebrate genetic code. The boundaries of the PCGs were further annotated using
the ORF Finder (http://www.ncbi.nlm.nih.gov/orffinder (accessed on 15 May 2023)) by
comparing them with orthologous genes of closely related species of Pterioidea using
BLASTX against the non-redundant protein sequence database in GenBank. The secondary
structure of tRNA genes was predicted via ARWEN [45] and tRNAscan-SE [46], while
the ribosomal RNA genes (rrnL and rrnS) were edited through alignment with published
homologous genes of closely related species. The nucleotide composition, codon usage, and
relative synonymous codon usage (RSCU) of the mitochondrial genome were calculated
in MEGA.11 [47] based on the invertebrate mitochondrial genetic code. The bias of the
nucleotide composition was measured via AT and GC skews as follows: AT skew = (A −
T)/(A + T) and GC skew = (G − C)/(G + C), where A, T, G, and C are the occurrences of
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the four nucleotides. The sequence features of the two mitochondrial circular genomes
were examined using CGView [48].

2.4. Phylogenetic Analysis

A total of 26 Pteriomorphia complete mitogenomes were used in the phylogenetic
analysis, with two species Archivesica marissinica and Tridacna squamosa from the Hetero-
conchia infraclass selected as the outgroup taxa (Table S1). The nucleotide sequences of
12 PCGs (excluding Atp8) and 2 rRNA genes of the Pteriomorphia species were used to
reconstruct the phylogenetic relationships. The nucleotide sequences for each PCG were
aligned separately based on codon position using the invertebrate mitochondrial genetic
code in MEGA.11 [47]. The rRNA genes were aligned using MAFFT [49] and the ambigu-
ously aligned sites were discarded using Gblocks [50] with default settings. Nucleotide
sequences for individual PCGs and rRNA alignments were concatenated using Geneious
Prime. The best partition scheme and corresponding substitution models for the dataset
were calculated with Partition Finder v2.1.1 [51], using the Bayesian Information Criterion
(BIC) and a user-defined search algorithm with branch lengths estimated as “linked”.

Maximum Likelihood (ML) and Bayesian Inference (BI) were used to perform phy-
logenetic analyses. ML trees were constructed using IQTREE [52] with models, which
allowed for different partitions to have different evolutionary rates (-spp option), using
10,000 ultrafast bootstrap replicates (-bb option). BI MCMC analysis was conducted using
MrBayes v.3.2.7a [53], running four simultaneous Monte Carlo Markov Chains (MCMCs)
for 10,000,000 generations, sampling every 1000 generations and discarding the first 25% of
generations as burn-in. Two independent runs were performed to increase the chance of
adequate mixing of the Markov chains and to increase the chance of detecting failure to
converge, as determined using Tracer v.1.7 [54]. The effective sample size (ESS) of all of
the parameters was above 200. The resulting phylogenetic trees were visualized in FigTree
v.1.4.4 [55].

2.5. Gene Rearrangement Analyses

The mitochondrial gene order of the PCGs and rRNA genes was mapped onto the
obtained phylogeny, and pairwise comparisons of the gene arrangement events of the
superfamily Pterioidea were conducted using CREx [56]. The analyses were based on
common intervals and considered reversals, transpositions, reverse transpositions, and
tandem duplication random losses (TDRLs).

3. Results and Discussion
3.1. Mitogenome Composition of P. albina and P. margaritifera

As shown in Figure 1, the mitogenomes of the two pearl oysters P. albina and P.
margaritifera are circular DNA molecules with lengths of 23,841 bp (GenBank Accession
No.: OR529434) and 15,556 bp (GenBank Accession No.: OR529435), respectively (Figure 1).
The complete mitogenome of P. albina encodes 38 genes, including 12 PCGs, 23 tRNA genes,
and 3 rRNA genes, with two duplicates of rrnS that are separated by 3281 nucleotides. The
P. margaritifera mitogenome contains the standard set of 36 mitochondrial genes, including
12 PCGs, 22 tRNA, and 2 rRNA genes. trnT, trnC, trnW, and trnM each have an additional
copy in P. albina. The trnM gene has an additional copy in P. margaritifera. All of the
mitochondrial genes were encoded on the heavy chain, consistent with the features of
marine bivalve mitogenomes [57,58]. The Atp8 gene was not detected in either of the
two pearl oysters. The absence of this gene has also been reported in several bivalve
mitogenomes [59–62]. Although the Atp8 gene has been described in some species of
Arcidae [63], Mytilidae [18,64], and Ostreidae [17], it has not been found in any publicly
available mitogenomes of Pterioidea. The detailed annotations of the complete mitogenome
are recorded in Tables 1 and 2.
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Figure 1. Mitochondrial genome map of P. albina and P. margaritifera. Gene segments are drawn to 
scale. 

Table 1. Gene annotations of the complete mt genome of P. albina. 

Gene Strand Location Size (bp) Start Codon Stop Codon Intergenic Nucleotides 
Cox1 H 1–1626 1626 ATG TAG 6 
Cox2 H 1633–2376 744 GTG TAG 13 
trnT1 H 2390–2454 65   137 
Nad6 H 2592–3071 480 ATG TAG 116 
Atp6 H 3188–3934 747 ATG TAA 7 
Cox3 H 3942–4721 780 ATT TAA 4 
Nad3 H 4726–5127 402 ATA TAA −20 
trnC1 H 5108–5169 62   4 
trnP H 5174–5239 66   −4 
trnH H 5236–5304 69   −34 
Nad1 H 5271–6281 1011 GTG TAG −32 
trnL H 6250–6312 63   −1 
trnN H 6312–6381 70   1 
trnF H 6383–6448 66   −36 

Nad4L H 6413–6733 321 TTG TAG 14 

Figure 1. Mitochondrial genome map of P. albina and P. margaritifera. Gene segments are drawn to scale.

Table 1. Gene annotations of the complete mt genome of P. albina.

Gene Strand Location Size (bp) Start
Codon

Stop
Codon

Intergenic
Nucleotides

Cox1 H 1–1626 1626 ATG TAG 6
Cox2 H 1633–2376 744 GTG TAG 13
trnT1 H 2390–2454 65 137
Nad6 H 2592–3071 480 ATG TAG 116
Atp6 H 3188–3934 747 ATG TAA 7
Cox3 H 3942–4721 780 ATT TAA 4
Nad3 H 4726–5127 402 ATA TAA −20
trnC1 H 5108–5169 62 4
trnP H 5174–5239 66 −4
trnH H 5236–5304 69 −34
Nad1 H 5271–6281 1011 GTG TAG −32
trnL H 6250–6312 63 −1
trnN H 6312–6381 70 1
trnF H 6383–6448 66 −36

Nad4L H 6413–6733 321 TTG TAG 14
Nad4 H 6748–8055 1308 ATA TAG 54
trnI H 8110–8176 67 18
trnG H 8195–8261 67 5
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Table 1. Cont.

Gene Strand Location Size (bp) Start
Codon

Stop
Codon

Intergenic
Nucleotides

trnW1 H 8267–8331 65 69
trnK H 8400–8466 67 13
trnY H 8480–8545 66 320
trnQ H 8866–8937 72 530

trnM1 H 9468–9544 77 438
trnA H 9983–10,050 68 8
trnT2 H 10,059–10,122 64 1009
rrnS1 H 11,132–11,937 806 1275
trnC2 H 13,213–13,271 59 1420
trnR H 14,692–14,761 70 129
trnD H 14,891–14,953 63 265
rrnS2 H 15,219–16,024 806
Cytb H 17,575–18,777 1203 ATT TAG −11
Nad2 H 18,767–19,741 975 GTG TAG 5
trnE H 19,747–19,814 68 110

trnW2 H 19,925–19,990 66 28
trnV H 20,019–20,085 67 514
rrnL H 20,600–22,000 1401 18

trnM2 H 22,019–22,087 69 −33
Nad5 H 22,055–23,698 1644 ATA TAG 143

Table 2. Gene annotations of the complete mt genome of P. margaritifera.

Gene Strand Location Size (bp) Start
Codon

Stop
Codon

Intergenic
Nucleotides

Cox1 H 1–1563 1563 ATG TAA 35
Cox2 H 1599–2525 927 ATG TAG −236

trnM1 H 2290–2343 54 −1
trnA H 2343–2413 71 −2
trnR H 2412–2476 65 2
trnT H 2479–2531 53 0
trnL1 H 2532–2594 63 136
Nad6 H 2731–3189 459 ATG TAG −9
trnG H 3181–3249 69 −2
trnW H 3248–3313 66 1
Atp6 H 3315–4004 690 ATG TAA −11
Cox3 H 3994–4791 798 ATG TAG 119
Nad3 H 4911–5381 471 ATG TAA −74
trnN H 5308–5371 64 3
trnD H 5375–5438 64 34
Nad1 H 5473–6414 942 ATG TAA 11
trnL2 H 6426–6487 62 48
trnP H 6536–6600 65 364
trnK H 6965–7029 65 456
trnC H 7486–7553 68 17
Cytb H 7571–8716 1146 ATG TAG −1
trnF H 8716–8780 65 0

Nad4L H 8781–9059 279 ATG TAA 20
Nad4 H 9080–10,387 1308 ATG TAA 50
Nad2 H 10,438–11,481 1044 ATG TAG −75
trnY H 11,407–11,471 65 0
trnV H 11,472–11,535 64 0
trnS H 11,536–11,601 66 131
rrnL H 11,733–12,701 969 59
trnQ H 12,761–12,825 65 1
rrnS H 12,827–13,616 790 15
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Table 2. Cont.

Gene Strand Location Size (bp) Start
Codon

Stop
Codon

Intergenic
Nucleotides

trnH H 13,632–13,685 54 0
trnE H 13,686–13,747 62 −1

trnM2 H 13,747–13,810 64 −1
Nad5 H 13,810–15,420 1611 ATG TAA 68
trnI H 15,489–15,551 63 5

The nucleotide composition of the two pearl oyster mitogenomes show a high AT
content (Table 3). The overall AT content value of the P. albina mtDNA was 58.0%, and
the highest AT content was observed in Cytb (61.8%). The AT content of the total PCGs
was higher than that of the total rRNA and total tRNA genes, and the AT content of PCGs’
second codon (60.6%) was the highest. The AT content of the P. margaritifera mtDNA was
57.8%, and the AT content of the total tRNA genes (59.7%) was higher than that of the total
PCGs and total rRNA genes, and the AT content of PCGs’ second codon (60.5%) was higher
than that of the other two codons. The two pearl oysters had a negative AT skew and a
positive GC skew on the major strand, showing similar patterns to other Pteriomorphia
species [62,65,66].

Table 3. List of AT content, AT skew, and GC skew of P. albina and P. margaritifera mtDNA.

Speices P. albina P. margaritifera

Feature (A + T)% AT Skew GC Skew (A + T)% AT Skew GC Skew

Whole
genome 58.0 −0.13 0.30 57.8 −0.24 0.35

PCGs 58.1 −0.21 0.28 56.7 −0.31 0.36
PCGs1 53.4 −0.07 0.30 53.6 −0.13 0.37
PCGs2 60.6 −0.41 0.22 60.5 −0.42 0.28
PCGs3 60.4 −0.14 0.32 56.3 −0.35 0.42
tRNAs 55.8 −0.04 0.24 59.7 −0.03 0.30
Cox1 57.2 −0.21 0.20 59.1 −0.30 0.23
Cox2 56.0 −0.18 0.23 56.8 −0.17 0.29
Nad6 57.7 −0.24 0.29 59.7 −0.32 0.47
Atp6 57.9 −0.23 0.30 58.2 −0.33 0.48
Cox3 56.6 −0.27 0.25 57.2 −0.28 0.27
Nad3 58.7 −0.16 0.41 56.5 −0.22 0.37
Nad1 59.1 −0.20 0.23 55.7 −0.31 0.26

Nad4L 55.4 −0.10 0.38 57.3 −0.36 0.33
Nad4 56.6 −0.26 0.34 53.8 −0.35 0.63
Cytb 61.8 −0.19 0.19 53.1 −0.36 0.37
Nad2 60.1 −0.24 0.35 56.6 −0.31 0.50
Nad5 57.9 −0.18 0.35 56.9 −0.31 0.42
rrnS 56.2 0.10 0.20 59.7 −0.01 0.22
rrnL 59.4 0.05 0.30 58.5 −0.04 0.33

rRNAs 57.7 0.07 0.25 59.1 −0.03 0.28

3.2. Protein-Coding Genes

Most of the PCGs in the two pearl oyster mitogenomes used typical start codons
(ATG and ATA), while a few genes in P. albina used alternative start codons, such as Cox1,
Nad1, and Nad2 using GTG, Cytb and Cox3 using ATT, and Nad4L using TTG. For the
termination codons, TAA and TAG were used in all PCGs of the two mitogenomes. The
most frequently detected amino acid in the PCGs of the two species’ mitogenomes was Leu
and the least was Gln (Figure 2), which is in accordance with the features of the invertebrate
mitochondrial genome [67,68]. Both species showed significant synonymous codon usage
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bias (Tables 4 and 5, and Figure S1), preferring codons containing bases A, T, and G, which
reflects the high AT content of marine bivalves.
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Table 4. Codon and relative synonymous codon usage (RSCU) of 12 protein-coding genes (PCGs) in
the mtDNA of P. albina.

Amino Acid Codon Count
(RSCU) Amino Acid Codon Count

(RSCU)

Phe UUU 246.0 (1.67) Ala GCU 83.0 (1.68)
UUC 48.0 (0.33) GCC 40.0 (0.81)

Leu UUA 176.0 (1.94) GCA 47.0 (0.95)
UUG 106.0 (1.17) GCG 28.0 (0.57)
CUU 80.0 (0.88) Gly GGU 67.0 (0.77)
CUC 24.0 (0.27) GGC 55.0 (0.64)
CUA 93.0 (1.03) GGA 72.0 (0.83)
CUG 64.0 (0.71) GGG 152.0 (1.76)

Ile AUU 135.0 (1.57) Arg CGU 23.0 (1.07)
AUC 37.0 (0.43) CGC 12.0 (0.56)

Met AUA 98.0 (1.08) CGA 24.0 (1.12)
AUG 84.0 (0.92) CGG 27.0 (1.26)

Val GUU 134.0 (1.32) Tyr UAU 97.0 (1.39)
GUC 44.0 (0.43) UAC 43.0 (0.61)
GUA 114.0 (1.13) His CAU 52.0 (1.25)
GUG 113.0 (1.12) CAC 31.0 (0.75)

Ser UCU 73.0 (1.53) Gln CAA 29.0 (0.97)
UCC 21.0 (0.44) CAG 31.0 (1.03)
UCA 30.0 (0.63) Asn AAU 40.0 (1.14)
UCG 7.0 (0.15) AAC 30.0 (0.86)
AGU 48.0 (1.01) Lys AAA 75.0 (1.15)
AGC 26.0 (0.54) AAG 55.0 (0.85)
AGA 76.0 (1.59) Asp GAU 52.0 (1.35)
AGG 101.0 (2.12) GAC 25.0 (0.65)
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Table 4. Cont.

Amino Acid Codon Count
(RSCU) Amino Acid Codon Count

(RSCU)

Pro CCU 47.0 (1.49) Glu GAA 32.0 (0.62)
CCC 23.0 (0.73) GAG 72.0 (1.38)
CCA 35.0 (1.11) Cys UGU 57.0 (1.31)
CCG 21.0 (0.67) UGC 30.0 (0.69)

Thr ACU 50.0 (1.67) Trp UGA 37.0 (0.57)
ACC 15.0 (0.50) UGG 93.0 (1.43)
ACA 36.0 (1.20) * UAA 3.0 (0.50)
ACG 19.0 (0.63) UAG 9.0 (1.50)

“*” in this table means stop codon.

Table 5. Codon and relative synonymous codon usage (RSCU) of 12 protein-coding genes (PCGs) in
the mtDNA of P. margaritifera.

Amino Acid Codon Count
(RSCU) Amino Acid Codon Count

(RSCU)

Phe UUU 239.0 (1.62) Ala GCU 89.0 (2.06)
UUC 56.0 (0.38) GCC 24.0 (0.55)

Leu UUA 136.0 (1.54) GCA 23.0 (0.53)
UUG 187.0 (2.12) GCG 37.0 (0.86)
CUU 76.0 (0.86) Gly GGU 108.0 (1.09)
CUC 19.0 (0.22) GGC 51.0 (0.52)
CUA 46.0 (0.52) GGA 68.0 (0.69)
CUG 66.0 (0.75) GGG 168.0 (1.70)

Ile AUU 132.0 (1.62) Arg CGU 29.0 (1.45)
AUC 31.0 (0.38) CGC 11.0 (0.55)

Met AUA 58.0 (0.63) CGA 12.0 (0.60)
AUG 125.0 (1.37) CGG 28.0 (1.40)

Val GUU 190.0 (1.71) Tyr UAU 93.0 (1.38)
GUC 44.0 (0.40) UAC 42.0 (0.62)
GUA 87.0 (0.78) His CAU 43.0 (1.01)
GUG 123.0 (1.11) CAC 42.0 (0.99)

Ser UCU 70.0 (1.48) Gln CAA 14.0 (0.56)
UCC 21.0 (0.44) CAG 36.0 (1.44)
UCA 26.0 (0.55) Asn AAU 50.0 (1.39)
UCG 19.0 (0.40) AAC 22.0 (0.61)
AGU 67.0 (1.41) Lys AAA 52.0 (0.87)
AGC 34.0 (0.72) AAG 67.0 (1.13)
AGA 45.0 (0.95) Asp GAU 48.0 (1.33)
AGG 97.0 (2.05) GAC 24.0 (0.67)

Pro CCU 59.0 (1.89) Glu GAA 31.0 (0.58)
CCC 20.0 (0.64) GAG 76.0 (1.42)
CCA 26.0 (0.83) Cys UGU 80.0 (1.65)
CCG 20.0 (0.64) UGC 17.0 (0.35)

Thr ACU 45.0 (1.84) Trp UGA 41.0 (0.62)
ACC 16.0 (0.65) UGG 91.0 (1.38)
ACA 16.0 (0.65) * UAA 7.0 (1.17)
ACG 21.0 (0.86) UAG 5.0 (0.83)

“*” in this table means stop codon.

3.3. tRNA and rRNA Genes

The mitogenome of most metazoans contains 22 tRNA genes, including two copies
of trnL and two of trnS. However, the number of tRNA genes is highly variable in
bivalves [69,70]. Duplication of the trnM genes has been found in many bivalve mi-
togenomes [71], which is consistent with our findings.

In the literature, the duplication of the trnW gene has also been observed in Os-
treoidea [17], while additional copies of trnT and trnC have not been reported. In addition,
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one of the trnL and both of the trnS genes have not yet been found in the mitogenome of
P. albina. The duplication of trnS has not been detected in P. margaritifera. In this study,
the secondary structure of tRNAs was investigated and the majority of them were found
to have a typical cloverleaf structure, except for trnC2 in P. albina and trnS and trnM1
in P. margaritifera (Figure 3). The D-arm of trnC2 in P. albina and trnS in P. margaritifera
was absent, and trnM1 in P. margaritifera lacked the T-arm. These tRNA genes ranged
from 53 to 73. The mitogenome of P. albina was 8285 bp larger than that of P. margaritifera,
which may be related to the duplication of rrnS and the additional mitogenome ORFs [12].
Pinctada albina have an almost identical extra copy of the rrnS, which was not detected in P.
margaritifera. Multiple studies have shown that duplication of rrnS is a common feature
of Ostreoidea [65], which was previously observed in Pinctada imbricata [40] and was also
observed in this study, and which may be related to gene rearrangement.
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3.4. Phylogenetic Analysis

According to BIC, the best partition scheme for PCGs was the one combining subunits
within genes into a single partition, but analyzing each codon position separately, while
the best partition scheme for rRNAs was the one combining the two genes (Table S2). ML
(−lnL = 279,788.758) and BI (−lnL = 279,693.89 for run 1; −lnL = 279,695.61 for run 2)
analyses arrived at almost identical topologies (Figure 4).

The phylogenetic tree showed that the eight species of Pterioidea formed a strongly
supported and monophyletic clade. The infraclass Pteriomorphia was comprised of two
clades. The first clade only included the superfamily Mytiloidea, while the second one
consisted of superfamilies Pectinoidea, Pinnoidea, Ostreoidea, Pterioidea, and Arcoidea,
which is consistent with the results of Wu et al. [72] based on mitochondrial PCGs. However,
the study of Wu et al. [72] showed that Pterioidea and Pinnoidea formed a clade, which
was a sister to Pectinoidea. This finding differed from ours. The phylogenetic relationship
reconstructed in our study indicated that Pterioidea formed its own clade, which was the
sister group of Pinnoidea + Ostreoidea. The branch formed by these three superfamilies
was most closely related to Pectinoidea and followed by Arcoidea.
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The relationship between the four superfamilies Pterioidea, Pinnoidea, Ostreoidea,
and Pectinoidea has long been controversial. Gaitán-Espitia et al. [39] analyzed Pteriomor-
phia based on 12 PCGs, which showed that the Pterioidea was more closely related to
Ostreoidea, and their MRCA was a sister group to Pinnoidea. This result was supported
by phylogenies derived from transcriptomes [73], 18S rDNA [74], and a combined dataset
from Tëmkin [36]. However, research by Adamkewicz et al. [75] at the class bivalve level
based on 18S rDNA showed that Pterioidea was more closely related to Pinnoidea, and
they formed a clade as a sister group to Ostreoidea. Meanwhile, our study revealed a
closer relationship between Pinnoidea and Ostreoidea, which was also supported by Zhan
et al. [40] based on 12 PCGs, by Ozawa et al. [76] using 12 PCGs and two rRNAs, and by
Matsumoto [38] based on COI. The monophyly of the genera Pinctada, Isognomon, and Pteria
was well supported in Pterioidea by our research, with Pinctada being most closely related
to Isognomon. This result is consistent with the study by Tëmkin [36] on molecular data
sets composed of DNA sequences for nuclear and mitochondrial loci, and anatomical and
shell morphological characteristics. The monophyly of the genera Pinctada and Pteria is also
supported by Zhan et al. [40]. Our phylogenetic tree revealed that the genus Pinctada can
be divided into two groups: P. albina + P. imbricata and P. maxima + P. margaritifera, which
is consistent with previous morphological classification based on shell morphology and
anatomical characteristics [77–79]. The morphological identification showed that P. albina
and P. imbricata have small shells and hinge teeth, while P. maxima and P. margaritifera have
larger shells without hinge teeth.
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3.5. Mitochondrial Gene Rearrangements within Pterioidea

The mitochondrial gene order in metazoans is relatively conserved. However, a
large number of gene rearrangements have been found in mitochondrial studies on bi-
valves [30,32,64]. Based on the types of genes, genome rearrangements can be characterized
as minor (tRNAs only) or major (PCGs and rRNA genes) rearrangements [80]. In general,
rearrangements of tRNAs are common, while PCGs are relatively conserved. There were
still substantial gene rearrangement events in the PCGs and rRNA genes of Pterioidea as
we deleted all tRNAs (Table 6). The CREx analysis of the PCGs and rRNA genes’ order in
Pterioidea suggested that when assuming the gene orders of P. margaritifera and P. albina to
be the ancestral ones, those of other species could be obtained with a minimum number of
changes. However, the rrnS gene in the mitogenome of P. albina contained an extra copy,
which required an additional deletion event leading to other species or duplication in P.
albina. Moreover, there were high numbers of common intervals between P. margaritifera
and other species (Figure 5A). Therefore, the PCGs and rRNA gene order of P. margaritifera
were assumed to be most similar to the ancestral order of Pterioidea (Figure 5B,C).

Table 6. CREx analysis of the most ancestral gene order in Pterioidea. The arrangements of PCGs
and rRNAs are considered. The mitogenomes of the three species in Isognomon have the same gene
order, so Isognomon bicolor is used to represent them. The gene rearrangement events are abbreviated
as follows: Transp., transposition; Rev., reversal; Rev. transp., reverse transposition; TDRL, tandem
duplication-random loss.

From To Transp. Rev. Rev.transp. TDRL Total
Events

P. albina P. imbricata 1 0 0 0 1
P. margaritifera 2 0 0 0 2

P. maxima 0 0 0 2 2
P. penguin 0 0 0 2 2
I. bicolor 3 4 0 0 7

P. imbricata P. albina 1 0 0 0 1
P. margaritifera 2 0 0 0 2

P. maxima 3 0 0 0 3
P. penguin 0 0 0 3 3
I. bicolor 3 4 0 0 7

P. margaritifera P. albina 0 0 0 1 1
P. imbricata 2 0 0 0 2
P. maxima 1 0 0 0 1
P. penguin 0 0 0 3 3
I. bicolor 3 4 0 0 7

P. maxima P. albina 1 0 0 1 2
P. imbricata 3 0 0 0 3

P. margaritifera 1 0 0 0 1
P. penguin 0 0 0 3 3
I. bicolor 2 8 0 0 10

P. penguin P. albina 1 0 0 2 3
P. imbricata 1 0 0 2 3

P. margaritifera 1 0 0 2 3
P. maxima 3 0 0 1 4
I. bicolor 1 1 1 2 5

I. bicolor P. albina 3 4 0 0 7
P. imbricata 3 4 0 0 7

P. margaritifera 3 4 0 0 7
P. maxima 2 8 0 3 13
P. penguin 2 1 1 2 6
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the number, the more similar the gene order between the two compared sequences. (B) Linearised
PCGs and rRNA gene orders of Pterioidea, based on the phylogenetic tree. (C) The putative evolu-
tionary patterns of Pterioidea mitochondrial PCGS and rRNA gene rearrangements.

4. Conclusions

The newly sequenced complete mitogenomes of P. albina and P. margaritifera showed
similar patterns for genome size and composition compared with those of other pterioid
species. However, the presence of an extra copy of rrnS in P. albina is an informative
characteristic that has otherwise only been detected in the P. imbricata mitogenome. The
results of our phylogenetic analysis support the monophyly of Pterioidea placed in the
Ostrea order and provide a robust phylogenetic framework for Pteriomorphia. An analysis
of the rearrangement events of PCGs and rRNA within Pterioidea species was conducted
and the ancestral gene order was inferred. The present study indicates that the complete
mitochondrial genome is a useful tool with which to understand the evolution of marine
bivalve Pteriomorphia.
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(Right column for each amino acid); Table S1: List of species used in this study; Table S2: Best fit
partitions and substitution models.
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