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1  |  INTRODUCTION

With approximately 1600 extant described species, 
Muricidae (Rafinesque, 1815) is one of the most spe-
ciose and morphologically diverse families of Gastropoda 
(Boss,  1971; Vermeij, 1996). Muricid species are distrib-
uted worldwide, and mainly in tropical waters (Taylor 
& Morris, 1988). Moreover, they have been found at dif-
ferent depths, from the intertidal zone to deep waters 
at depths of over 3000 m; however, most species inhabit 

shallow sea sand, rocks and coral reefs (Barco et al., 2010). 
Muricids are active predators, preying mainly on bivalves 
and barnacles (Taylor & Morris, 1988; Barco et al., 2010). 
Predation mainly involves drilling the shell of the prey an-
imal via a combination of mechanical action of the radula 
and secretion of organic acids (Carriker, 1961). Because of 
their predatory behaviour, muricids are ecologically signif-
icant in marine benthic communities, and their complex 
predatory behaviours are reflected their adaptive radia-
tion (Barco et al., 2010; Harding et al., 2007; Menge, 1974; 
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Abstract
Muricidae is one of the most species- rich and morphologically diverse families in 
Gastropoda, with a worldwide distribution. The classification of Muricidae has 
traditionally been based on shell and radular characteristics; however, the phy-
logenetic relationships within the family are debated due to morphological con-
vergence and plasticity. In this study, to explore the phylogenetic relationships of 
Muricidae, we sequenced 11 muricid mitochondrial (mt) genomes and compared 
them with 13 previously reported complete muricid mt genomes. All muricid mt 
genomes shared the same gene arrangement and exhibited conserved genome 
size and nucleotide composition. Three- nucleotide deletions in atp8 and nad4, 
and three- nucleotide insertions in nad2 were detected in Rapaninae. Both maxi-
mum likelihood and Bayesian inference analyses supported the monophyly of 
each subfamily studied (Ocenebrinae, Muricinae, Rapaninae and Ergalataxinae). 
Ergalataxinae was recovered as the sister taxon of Rapaninae, refuting the tra-
ditional morphology- based placement of Ergalataxinae within Rapaninae. In 
Rapaninae, Indothais was confirmed to be monophyletic and determined to be 
a valid genus. Similarly, Drupina was determined to be an independent genus 
rather than a subgenus of Drupa. Purpura was recovered as a paraphyletic group, 
with Purpura panama being sister to Reishia + Rapana + Indothais and clustering 
with Purpura bufo.
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Morton, 1999, 2004; Peharda & Morton, 2005). Some muri-
cids, such as Rapana venosa are an economically valuable 
food source in coastal regions (Leiva & Castilla, 2002).

The classification and phylogeny of Muricidae have 
long been controversial due to morphological conver-
gence and plasticity within the group. The main contro-
versies centred on the classification of subfamilies and 
the relationship between each subfamily in Muricidae. 
Tryon  (1880) originally divided Muricidae into two 
subfamilies: Muricinae and Purpurinae. However, 
Cossmann  (1903) recognized five subfamilies of 
Muricidae based on opercular characteristics: Muricinae, 
Ocenebrinae, Trophoninae, Typhinae and Rapaninae. He 
proposed Purpuridae to be a distinct family outside of 
Muricidae and proposed the subfamilies Rapaninae and 
Ocenebrinae for the first time. By comparing the shells 
of fossil and recent species, Keen and Mclean (1971) re-
moved Rapaninae from Muricidae and formed a new 
family, Thaididae, comprising Rapaninae, Thaidinae and 
Drupinae. However, in the same year, Kuroda et al. (1971) 
reassigned some Thaididae species to the new subfam-
ily Ergalataxinae in Muricidae. Additionally, based 
on shell, radula and egg capsule morphology, Radwin 
and D'Attilio  (1971) synonymized Ergalataxinae with 
Muricinae in their subsequent monograph on muricids. 
Ponder and Warén  (1988) divided Muricidae into three 
subfamilies (Muricinae, Thaidinae and Coralliophilinae) 
and moved all species in the other previously recognized 
subfamilies to the subfamily Muricinae. Based on gross 
anatomy, radular, opercular, protoconch morphology 
and shell ultrastructure, Ergalataxinae was synonymized 
with Rapaninae (Kool,  1993; Vermeij & Carlson,  2000). 
The current classification system of Muricidae is based 
on the study of Bouchet et al. (2005), in which Muricidae 
was considered a single family comprising 10 subfamilies 
(Muricinae, Muricopsinae Ocenebrinae, Trophoninae, 
Typhinae, Tripterotyphinae, Ergalataxinae, Rapaninae, 
Haustrinae and Coralliophilinae). Later, the genera 
Pagodula, Xymenopsis, Xymene and Trophonella in the 
Trophoninae were united in a new subfamily, Pagodulinae 
(Barco et al., 2012).

Some muricids exhibit ontogenetic changes in mor-
phology (Fujioka,  1985; Herbert et al.,  2007); for in-
stance, shell and radular characters vary with age, season 
and sex (Tan, 1995; Tan & Sigurdsson, 1996), which can 
lead to an inaccurate understanding of muricid phylog-
eny when relying solely on morphological character-
istics. Several attempts have been made to reconstruct 
the phylogeny of the Muricidae using molecular data. 
Marko and Vermeij  (1999) reconstructed the phylogeny 
of Ocenebrinae in the eastern Pacific using the mitochon-
drial (mt) 12S rRNA and cox1 genes, in which Ocenebrinae 
was proven to be monophyletic relative to Rapaninae as 

an outgroup. By analysing the mt 12S rRNA gene and 
nuclear ITS2, Oliverio et al. (2002) found that Rapaninae 
was the sister group to Coralliophilinae, while Muricinae 
was closely related to Muricopsinae but distantly re-
lated to Rapaninae, Coralliophilinae and Ocenebrinae. 
However, another study on muricid phylogeny using the 
12S rRNA gene indicated that Rapaninae was not sister 
to Coralliophilinae and that the phylogenetic relation-
ship between Muricinae and Rapaninae was relatively 
close, in contrast to the results of previous study (Oliverio 
& Modica,  2009). Analyses using the nuclear 28S rRNA 
and mt 16S rRNA genes demonstrated strong support for 
a sister relationship between Rapaninae + Ocenebrinae 
and Ergalataxinae (Claremont et al., 2008). In a study by 
Barco et al. (2010), Rapaninae and Ergalataxinae were re-
covered as sister groups, but the sister taxa relationship 
between Rapaninae and Ocenebrinae was not verified. 
To date, owing to the limited phylogenetic signal con-
tained in short gene fragments, phylogenetic studies of 
Muricidae based on gene fragments have often produced 
contradictory results and are not always well- supported. 
Therefore, it is important to reconstruct a well- supported 
phylogenetic tree to solve the existing taxonomic prob-
lems of Muricidae.

Researchers have found that genes at different loci 
may be subject to different selection pressures over the 
course of evolution. A single gene or fragment gene 
contains few information loci, which may not be repre-
sentative of whole genome evolution when analysing 
phylogeny (Cunha et al., 2009; Uribe et al., 2016; Uribe, 
Williams et al.,  2017). Therefore, phylogenetic studies 
based on fragment genes may lead to unreliable or erro-
neous results (Rokas et al., 2003; Zardoya & Meyer, 1996). 
The mt genome contains abundant sequence information 
and information on structural characteristics, which can 
provide a large number of genome- level features as sig-
nals for studying metazoan evolutionary relationships. 
Recently, mt genomes have been widely used in phyloge-
netic studies of gastropods, including Patellogastropoda 
(Xu et al.,  2022), Lymnaeoidea (Young et al.,  2021), 
Caenogastropoda (Uribe et al., 2018) and Conidae (Uribe, 
Puillandre & Zardoya, 2017). Although 13 complete mu-
ricid mt genomes are currently available in GenBank, a 
comprehensive phylogenetic analysis of Muricidae based 
on mt genomes has not been reported.

In the present study, we sequenced 11 complete mt 
genomes from Muricidae. Combined with the published 
mitogenome from GenBank, we reconstructed the phy-
logeny of Muricidae, including a total of 24 mt genomes, 
with the following aims: (a) to reconstruct the phylogeny 
of the Muricidae and resolve the phylogenetic position of 
controversial taxa; and (b) to explore mt genomic charac-
teristics among different lineages.
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2  |  MATERIALS AND METHODS

2.1 | Sample collection, DNA extraction 
and sequencing

All specimens were collected in the field from the south-
ern coastal areas of China (Table 1). The specimens were 
then fixed and preserved in 95% ethanol. We selected 11 
muricid species belonging to eight genera for the follow-
ing analyses. Total genomic DNA was extracted from 
100 mg of foot tissue following a modified Cetyl Trimethyl 
Ammonium Bromide method (Winnepenninckx 
et al.,  1993). DNA quality was assessed by agarose gel 
electrophoresis and DNA concentration was determined 
using NanoDrop 2000 (Thermo Scientific). Qualified sam-
ples were submitted to Novogene for library construction 
and high- throughput sequencing. Sequencing libraries 
were prepared with average insert sizes of approximately 

300 bp and sequenced as 150 bp paired- end runs on an 
Illumina HiSeq X platform (Novogene). Finally, approxi-
mately 8 Gb of raw data were generated for each library.

2.2 | Genome assembly, gene 
annotation and sequence analysis

Raw reads were filtered using Trimomatics (Bolger 
et al., 2014). The resulting clean reads were assembled via 
de novo assembly in SPAdes (Bankevich et al., 2012) with 
k- mers of 21, 33, 55 and 77. To find the target mt genome, 
assembled results were searched against a nucleotide 
database constructed from the complete mt genome of 
Rapana venosa (KM213962) using BLASTN (http://www.
ncbi.nlm.nih.gov/BLAST) with an e- value cut- off of 0.01. 
All newly sequenced mt genome sequences have been de-
posited in GenBank, with the accessions listed in Table 1.

Species Subfamily
Length 
(bp) Location

GenBank 
acc. no.

Rapana venosa Rapaninae 15,271 Qingdao, China KM213962

Indothais sacellum* Rapaninae 15,237 Sanya, China MW550293

Indothais lacera Rapaninae 15,272 Beihai, China MG099702

Indothais javanica* Rapaninae 15,219 Sanya, China MW550295

Reishia clavigera Rapaninae 15,285 Korea DQ159954

Reishia luteostoma 1* Rapaninae 15,262 Ningbo, China MW550286

Reishia luteostoma 2 Rapaninae 15,301 Zhoushan, 
China

MG786490

Purpura bufo* Rapaninae 15,239 Sanya, China MW550291

Purpura panama* Rapaninae 15,227 Sanya, China MW550290

Menathais tuberosa Rapaninae 15,294 Chuuk, 
Micronesia

KU747972

Tylothais virgata* Rapaninae 15,286 Sanya, China MW550294

Drupa morum* Rapaninae 15,895 Sanya, China MW550292

Drupina grossularia* Rapaninae 16,188 Sanya, China MW550296

Drupella margariticola* Ergalataxinae 15,410 Danzhou, China MW550287

Tenguella granulata* Ergalataxinae 15,387 Beihai, China MW550288

Tenguella musiva* Ergalataxinae 15,218 Beihai, China MW550289

Chicoreus torrefactus Muricinae 15,359 Zhoushan, 
China

MG786489

Bolinus brandaris Muricinae 15,380 Madrid, Spain EU827194

Murex trapa Muricinae 15,408 Beihai, China MN462589

Boreotrophon 
candelabrum

Pagodulinae 15,265 Dalian, China MK361104

Ceratostoma burnetti Ocenebrinae 15,334 Dalian, China MK411749

Ceratostoma rorifluum Ocenebrinae 15,338 Dalian, China MK411750

Ocinebrellus falcatus Ocenebrinae 15,326 Dalian, China MK348224

Ocinebrellus inornatus Ocenebrinae 15,324 Dalian, China MK395390

Note: The newly sequenced complete mt genomes are indicated with an asterisk (*).

T A B L E  1  Mitochondrial (mt) 
genomes analysed in this study.
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The coding regions of 13 protein- coding genes (PCGs) 
were identified using ORF Finder (https://www.ncbi.
nlm.nih.gov/orffi nder) and MITOS web server (Bernt 
et al.,  2013), using the invertebrate mt genetic code. 
Gene boundaries were examined and adjusted manually 
by comparison with the sequenced muricid mt genome. 
tRNA genes were identified using ARWEN (Laslett & 
Canbäck,  2008). The positions of the rRNA genes were 
determined using the MITOS web server. The inferred 
rRNA genes were identified by sequence comparison 
with previously reported muricid rRNA genes and were 
assumed to extend to the boundaries of adjacent genes 
(Boore et al., 2005).

The newly determined complete mt genomes were 
aligned with all orthologous muricid mt genomes avail-
able in GenBank (Table 1). The substitution saturation of 
PCGs and rRNA genes was tested in DAMBE (Xia, 2018). 
All codons of atp8 gene and the 3rd codons of other PCGs 
were discarded due to high saturation (Tables S1 and S2). 
The saturation of rRNA genes and conservation of tRNA 
genes were determined to be inappropriate for muricid 
phylogenetic analyses (Chris et al.,  1994; Yang,  1998). 
Therefore, three datasets were constructed and analysed. 
The first (hereafter referred to as the MA dataset) was 
aimed at testing the internal phylogenetic relationships 
of Muricidae, including the amino acid sequences of 13 
PCGs. The second dataset (MD) was the nucleotide se-
quences of the first two codons of 12 PCGs, except atp8 
gene. The third (MN) dataset was used to calculate pair-
wise genetic distances with the nucleotide sequences of 
the 13 PCGs and two rRNA genes. The amino acid and 
nucleotide sequences of the 13 PCGs were aligned sepa-
rately using Clustal W (Thompson et al., 1994) in MEGA 
7 (Kumar et al.,  2016). The nucleotide sequences of the 
two rRNA genes were aligned separately with MAFFT 7 
(Katoh et al., 2013) and further verified manually. The am-
biguously aligned positions were removed using Gblocks 
v.0.91b (Castresana,  2000) with the following settings: 
- t = d, −b1 = 50% + 1, −b2 = b1, −b3 = 8, −b4 = 2, −b5 = a. 
Finally, the different single alignments were concate-
nated using Sequence Matrix 1.7.8 (Vaidya et al.,  2011). 
The AT content values and nucleotide frequencies were 
computed using the EditSeq program from DNASTAR 
(Burland,  2000). The GC and AT skew were calculated 
according to the following formulae: AT skew = (A − T)/
(A + T); GC skew = (G − C)/(G + C).

2.3 | Phylogenetic analysis

Pairwise genetic distances were estimated based on the 
MN dataset in MEGA 7 (Kumar et al.,  2016) under the 
maximum composite likelihood model. Phylogenetic T
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analyses were conducted using the maximum likelihood 
(ML; Felsenstein,  1981) and Bayesian inference (BI; 
Huelsenbeck & Ronquist,  2001) approaches using the 
MA and MD datasets. ML analyses were performed using 
IQtree v. 1.6.8 (Nguyen et al., 2015) with 10,000 bootstrap 
replicates and the ultrafast bootstrap feature. BI analyses 
were conducted using MrBayes v.3.2 (Ronquist et al., 2012) 
running four simultaneous Monte Carlo Markov chains 
for 10,000,000 generations sampling every 1000 genera-
tions. The first 25% of the generations were discarded as 
burn- in. Subsequently, two independent Bayesian infer-
ence runs were performed. Parameter convergence was 
achieved within 10,000,000 generations with a standard 
deviation of split frequencies of less than 0.01. The effec-
tive sample size (ESS) values for all sampled parameters 
were checked with Tracer 1.7 (Rambaut et al.,  2018) to 
ensure convergence was reached (ESS > 200). Node sup-
port was assessed based on Bayesian posterior probabil-
ities (PP), and a PP higher than 0.95 was considered as 
high statistical support. The phylogenetic trees and node 
labels were visualized in FigTree v1.4.2 (Rambaut, 2014). 
The best partition schemes and best- fit models of substitu-
tion for the datasets were identified using Partition Finder 
Protein 2 and Partition Finder 2 (Lanfear et al., 2016) with 
the Bayesian Information Criterion (Schwarz, 1978). The 
partitions tested were as follows: all genes grouped, all 

genes separated, and genes grouped by enzymatic com-
plexes (nad, cox, atp and cytb). The selected best- fit parti-
tions and models are listed in Tables S3 and S4.

3  |  RESULTS AND DISCUSSION

3.1 | Mitochondrial genome organization 
and structural features

The newly sequenced mt genomes in the present study 
showed similar patterns of genome size, AT contents and 
AT skews. The size of the 11 mitogenomes ranged from 
15,218 bp (Tenguella musiva) to 16,187 bp (Drupina gros-
sularia) (Table 2). All mitogenomes were AT- rich (>60%), 
with Indothais sacellum having the highest (69.51%) and 
Drupa morum having the lowest (60.42%) AT content 
(Table  2). The nucleotide compositions were strongly 
skewed away from C in favour of G (the GC skews ranged 
from 0.003 to 0.072) and from A in favour of T (the AT 
skews ranged from −0.146 to −0.121) (Table 2). The posi-
tive GC skews and negative AT skews were consistent 
with those of other neogastropod species reported in pre-
vious study (Cunha et al., 2009) and were caused by the 
asymmetric replication and transcription of mt genomes 
(Clayton, 1982; Reyes et al., 1998; Tanaka & Ozawa, 1994). 

F I G U R E  1  Gene map of the mt genomes of 11 Muricidae species.
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Similar to those of most metazoans (Boore, 1999), muricid 
mt genomes contained 13 PCGs, 22 tRNAs and 2 rRNAs. 
Among these genes, 13 PCGs, 14 tRNAs (trnD, trnV, trnL1, 
trnL2, trnP, trnS1, trnH, trnF, trnK, trnA, trnR, trnN, trnI 
and trnS2), and 2 rRNAs (rrnS and rrnL) were encoded on 
the major strand, whereas the other eight tRNAs (trnM, 
trnY, trnC, trnW, trnQ, trnG, trnE and trnT) were encoded 
on the minor strand. The gene order of the 11 muricid mt 
genomes (Figure 1) was identical to that of other reported 
neogastropod mt genomes (Brauer et al.,  2012; Cunha 
et al., 2009; Yang et al., 2020; Zhong et al., 2019).

Within muricids, most PCGs use conventional start co-
dons (ATG and ATA). Deviations were observed in nad4 
(T. musiva and T. granulata), which started with GTG. 
Most PCGs were terminated with the complete termina-
tion codons TAA and TAG, but nad2 of Ergalataxinae and 
nad6 of D. morum ended with an incomplete stop codon 
(T). During transcription, the incomplete stop codon 

performs termination functions in the form of mRNA 
polyadenylation to modify the TAA termini (Maria 
et al., 2011; Ojala et al., 1981). When the PCGs of 24 mu-
ricids were aligned, the mt sequences of Rapaninae spe-
cies were found to contain a deletion of three continuous 
nucleotides in atp8 (Figure 2) and nad4 (Figure 3), lead-
ing to the deletion of one amino acid, which reflected un-
usual constraints on proteins in these taxa. Continuous 
nucleotide deletions in gastropod have been reported 
in previous studies, which occurred in nad2 and nad6 
(Sevigny et al.,  2015; Yang et al.,  2018). Additionally, a 
continuous six- nucleotide insertion was found in nad2 
of Rapaninae (Figure 4), which led to two amino acid in-
sertions. Nucleotide insertions and deletions (indels) are 
among the main sources of evolutionary changes at the 
molecular level (Tao et al., 2008). Similar indels have not 
been found in the subfamily Ergalataxinae. The charac-
teristics of deletions and insertions within nad2 and nad4 

F I G U R E  2  Atp8 sequence differences in 24 muricids and two outgroup species. Nucleotide (a) and amino acid (b) alignments of a 
portion of atp8 gene indicate that Rapaninae lack three continuous nucleotides present in other muricids.
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support the hypothesis that Ergalataxinae is not nested 
within Rapaninae, which refutes previous studies based 
on morphology (Vermeij & Carlson, 2000). Interestingly, 
the indels in atp8 (Figure 2) provide support for a mono-
phyletic clade comprising Ergalataxinae, Muricinae, 
Pagodulinae and Ocenebrinae as sister to Rapaninae. In 
the newly sequenced mt genomes, the 12 PCGs (except 
nad4 gene) showed almost the same length in different 
species, whereas the length of nad4 genes varied among 
subfamilies. The length of nad4 genes in Ocenebrinae, 
Ergalataxinae and Pagodulinae was up to 1374 bp, while 
that in Rapaninae and Muricinae was only 1353 and 
1356 bp, respectively. When the nad4 genes were aligned, 
only rapanine species were found to contain a deletion of 
three continuous nucleotides, which demonstrated that 
the variation in nad4 gene length was caused by the dif-
ferent positions of the start codon.

3.2 | Phylogenetic analyses

A total of 26 taxa were selected for phylogenetic analyses, 
including 23 muricid species belonging to 16 genera and 
five subfamilies (Rapaninae, Ergalataxinae, Muricinae, 
Ocenebrinae and Pagodulinae; Table 1). Siphonalia sub-
dilatata (MG827217) from Buccinidae and Babylonia 
lutosa (Q424447) from Babyloniidae were used as out-
groups. The phylogenetic trees constructed here covered 
the most comprehensive muricid mt genomes. However, 
most species included in this analysis were from the Indo- 
Pacific Ocean, and several valid subfamilies of Muricidae 
in World Register of Marine Species were still not repre-
sented in our dataset.

In the present study, almost all nodes in the BI tree 
were strongly supported, while some nodes in the ML 
tree received moderate statistical support (Figure 5). The 

F I G U R E  3  Nad4 sequence differences in 24 muricids and two outgroup species. Nucleotide (a) and amino acid (b) alignments of a 
portion of nad4 gene indicate that Rapaninae lack three continuous nucleotides present in other muricids.
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monophyly of each subfamily (Rapaninae, Ergalataxinae, 
Ocenebrinae and Muricinae) was strongly supported, 
consistent with previous studies using partial sequences 
of mt and nuclear genes (Barco, 2015; Barco et al., 2010, 
2016; Claremont et al.,  2013). Ergalataxinae was recov-
ered as the sister taxon of Rapaninae (BS: 100%, PP: 1.00), 
which refuted the results of morphological classifica-
tion where Ergalataxinae was placed within Rapaninae 
(Kool,  1993; Vermeij & Carlson,  2000). The clade of 
Muricinae + Pagodulinae was sister to the clade of 
Ergalataxinae + Rapaninae (PP: 0.78) in the BI analy-
sis, but recovered as a sister taxon to Ocenebrinae in the 
ML analysis (BS: 50%). A previous study using the 12S 
rRNA gene demonstrated that Muricinae was sister to 
Rapaninae + Ergalataxinae (Oliverio et al.,  2009), which 
was consistent with our BI analysis, while the molecular 
phylogeny of Barco et al. (2010) showed the same results 
as our ML analysis. According to Claremont et al. (2008), 
Ergalataxinae was sister to Ocenebrinae + Rapaninae 

and then clustered with Muricinae. Our BI and ML anal-
yses both refute that Ocenebrinae is a sister group of 
Rapaninae (Claremont et al., 2008). Therefore, to analyse 
the phylogeny of Muricinae (and Pagodulinae), further 
research with larger datasets is needed owing to the low 
node support values (0.78 PP and 50% BS, respectively).

Claremont et al.  (2013) first proposed Indothais by 
using four genes (28S rRNA, 16S rRNA, 12S rRNA and 
cox1), which mainly consists of species formerly belong-
ing to Reishia in the Indo- West Pacific. In this study, 
Indothais was confirmed to be monophyletic (BS: 100%, 
PP: 1.00). R. venosa was sister to Indothais (BS: 87%, PP: 
1.00) and clustered with Reishia (BS: 85%, PP: 1.00). The 
genetic distances between Indothais and Reishia were 
0.186– 0.211 (Figure  6), higher than the maximum dis-
tances between the congeneric species (Reishia, 0.078; 
Tenguella, 0.141; Ceratostoma, 0.062; Ocinebrellus, 0.077; 
Indothais, 0.180). This further shows that Indothais was 
a valid genus. Drupina was recovered at the base of 

F I G U R E  4  Nad2 sequence differences in 24 muricids and two outgroup species. Nucleotide (a) and amino acid (b) alignments of a 
portion of nad2 gene indicate that the six- nucleotide insertion present in Rapaninae.
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F I G U R E  5  Phylogenetic relationships of Muricidae based on the MA dataset. The ML phylograms are shown in the (a). The BI 
phylograms are shown in the (b). Numbers at nodes are statistical support values for ML (bootstrap proportions in percentage)/BI (posterior 
probabilities). Solid black circles represent nodes with posterior probabilities ≥0.95 and bootstrap proportions ≥90. Shells of all the 
specimens sequenced in this study are illustrated.

F I G U R E  6  Pairwise genetic distances based on MN dataset of Rapana venosa (Rve), Indothais sacellum (Isa), Indothais lacera (Ila), 
Indothais javanica (Ija), Reishia clavigera (Rcl), Reishia luteostoma1 (Rlu1), Reishia luteostoma2 (Rlu2), Purpura bufo (Pbu), Purpura panama 
(Ppa), Menathais tuberosa (Mtu), Tylothais virgata (Tvi), Drupa morum (Dmo), Drupina grossularia (Dgr), Drupella margariticola (Dma), 
Tenguella granulata (Tgr), Tenguella musiva (Tmu), Chicoreus torrefactus (Cto), Bolinus brandaris (Bbr), Murex trapa (Mtr), Boreotrophon 
candelabrum (Bca), Ceratostoma burnetti (Cbu), Ceratostoma rorifluum (Cro), Ocinebrellus falcatus (Ofa), Ocinebrellus inornatus (Oin), 
Babylonia lutosa (Blu), Siphonalia subdilatata (Ssu).
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Rapaninae (BS: 100%, PP: 1.00), and Drupa was sister to 
the remaining species in Rapaninae (BS: 82%, PP: 1.00). 
Drupina had generally been considered a subgenus of 
Drupa (Emerson & Cernohorsky,  1973; Monsecour & 
Wuyts, 2007), but a previous study based on 12S rRNA, 
cox1, and nuclear 28S genes recognized Drupina as a 
valid genus (Claremont et al., 2012). The clustering re-
lationship between Drupina and Drupa in our phylo-
genetic analysis was consistent with a study based on 
fragment genes, which demonstrated that Drupina was 
an independent genus rather than a subgenus of Drupa. 
Additionally, the genetic distances reflected the same re-
sult, with 0.304 (Figure 6) between Drupina and Drupa 
being larger than the genetic distances within the same 
genus (Reishia, 0.078; Tenguella, 0.141; Ceratostoma, 
0.062; Ocinebrellus, 0.077; Indothais, 0.180). Purpura was 
not recovered as a monophyletic group in our analyses. 
In the MA dataset analysis, Purpura panama was recov-
ered as sister to the clade Reishia + Rapana + Indothais 
(BS: 100%, PP: 0.65) and then clustered with Purpura 
bufo (BS: 100%, PP: 1.00). However, in the MD data-
set analysis, P. bufo was sister to Reishia (BS: 100%, 
PP: 0.65). P. panama was recovered as a sister to the 
clade (Reishia + P. bufo) + (Rapana + Indothais) (BS: 
100%, PP: 1.00; Figure  S2). The evolutionary status of 
P. bufo is unclear. In previous morphological studies, 
P. bufo was classified as Thais (Reishia) and Mancinella 
(Cernohorsky, 1972; Kilburn & Rippey, 1982). Molecular 
analysis performed by Claremont et al. (2013) recovered 
P. bufo at the base of the clade comprising Purpura, 
Reishia and Indothais; however, none of these branches 
were particularly well- supported. The genetic distances 
between P. bufo and Reishia were 0.216– 0.217, higher 
than the maximum distance within Reishia (0.078), 
which supported that P. bufo should be considered 
as a distinct clade instead of clustering with Reishia. 
However, the genetic distance between P. bufo and P. 
panama (0.228) was higher than the maximum distance 
among the congeneric species (Reishia, 0.078; Tenguella, 
0.141; Ceratostoma, 0.062; Ocinebrellus, 0.077; Indothais, 
0.180). The type species of Purpura (P. persica) resem-
bles P. panama in terms of shell morphology. Therefore, 
the generic status of ‘Purpura’ bufo in the current tax-
onomy is dubious and should be reconsidered in future 
studies.

4  |  CONCLUSIONS

The mt genomes of 11 muricid species were conserved 
in genome size, nucleotide content and gene order. 
However, compared to other subfamilies, rapanine spe-
cies have nucleotide indels in some PCGs of their mt 

genomes, which provides important phylogenetic sig-
nals. The reconstructed mitogenomic tree strongly sup-
ports the monophyly of each subfamily in Muricidae. 
This strongly supported a sister taxon relationship be-
tween Ergalataxinae and Rapaninae, supporting the 
taxonomic validity status of Ergalataxinae. However, 
the phylogeny of Muricinae needs to be further con-
firmed with nuclear data and larger sampling. Within 
Rapaninae, Indothais was determined to be a valid genus 
comprising species that formerly belonged to Reishia. 
The phylogenetic relationship between Drupina and 
Drupa indicated that Drupina was a full genus rather 
than a subgenus of Drupa. Purpura was not recovered 
as a monophyletic group, which necessitates revision of 
the classification of P. bufo by increasing the number of 
samples and datasets.
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