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  Abstract      The eff ects of stocking density on the growth and metabolism of Amur sturgeon were assessed. 
Amur sturgeon were grown for 70 days at three diff erent stocking densities (low stocking density, LSD: 
5.5 kg/m 3 ; medium stocking density, MSD: 8.0 kg/m 3 ; and high stocking density, HSD: 11.0 kg/m 3 ), and 
the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, 
pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days 
of growth, the fi sh maintained at HSD had signifi cantly lower fi nal body weight and specifi c growth rate, 
and a higher feed conversion ratio than those of the fi sh in the MSD and LSD groups. The HSD group had 
the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased 
signifi cantly in the HSD group, indicating that the stress-response system was activated in these fi sh. There 
was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations 
of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The 
full-length cDNAs of  GH  and  IGF - 2  genes (995-bp and 1 207-bp long, respectively), were cloned and 
analyzed. In the HSD group, the expressions of  GH  in the pituitary and growth hormone receptor ( GHR ) 
and  IGF - 1  in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the 
transcript level of  IGF - 2  signifi cantly decreased in the liver, but did not change in muscle. Overall, our 
results indicated that a HSD negatively aff ects the growth performance and leads to changes in lipid and 
protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis 
may be responsible for the poor growth performance of Amur sturgeon under crowding stress. 

  Keyword : Amur sturgeon; stocking density; growth; metabolism; growth hormone (GH)/insulin-like 
growth factor (IGF) axis 

 1 INTRODUCTION 

 The growth of fi sh is a complex physiological and 
metabolic process that is primarily controlled by the 
growth hormone (GH)/insulin-like growth factors 
(IGFs) axis (Moriyama et al., 2000; Beckman, 2011; 
de las Heras et al., 2015). Growth hormone and IGFs 
(including IGF-1 and IGF-2) are important hormones 
involved in many physiological processes and 
metabolic pathways related to somatic growth, 
development, metabolism, and reproduction 
(Reinecke et al., 2005; Salas-Leiton et al., 2010; de 
las Heras et al., 2015). The pituitary secretes GH, 
which circulates throughout the body and stimulates 
the synthesis and secretion of IGF-1 (Patel et al., 

2005; Reindl and Sheridan, 2012). This process is 
mediated by binding of GH to the GH receptor (GHR), 
which is essential for the production and release of 
IGF-1 in the liver and other peripheral tissues (Kita et 
al., 2005; Tanamati et al., 2015). Then, IGF-1 regulates 
most of the somatotropic activities of GH such as 
cellular growth and diff erentiation (Mommsen, 2001; 
Otteson et al., 2002), DNA and protein synthesis 
(Duan, 1998), and lipid and carbohydrate metabolism 
(Moriyama et al., 2000; Reindl and Sheridan, 2012).  
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 Whereas much is known about the physiological 
functions of IGF-1, little is known about those of 
IGF-2. Several studies have reported the presence of 
IGF-2 in several teleost fi sh species such as  Pagrus  
 auriga  (Ponce et al., 2008),  Dicentrarchus   labrax  
(Radaelli et al., 2008) and  Oreochromis   niloticus  
(Caelers et al., 2004). IGF-2 is initially translated as a 
preprohormone, consisting of a signal peptide, 
followed by B, C, A, D, and E domains in turn from 
the N-terminal (Jones and Clemmons, 1995; Ponce et 
al., 2008). It has been reported that IGF-2 may play a 
vital role in embryonic growth in mammals (DeChiara 
et al., 1990, 1991). In fi sh,  IGF - 2  transcripts and/or 
the IGF-2 protein have been detected in larvae as well 
as in multiple juvenile and adult tissues (Caelers et 
al., 2004; Patruno et al., 2006; Ponce et al., 2008; 
Radaelli et al., 2008), suggesting that it plays 
important roles throughout the fi sh lifecycle. 

 The levels of circulating GH and IGFs and their 
mRNA transcripts in fi sh are considered to be markers 
of growth and physiological status (Dyer et al., 2004), 
which are directly or indirectly aff ected by various 
factors in aquaculture (e.g., temperature, salinity, 
photoperiod) (Gabillard et al., 2003; Deane and Woo, 
2009; Mohammed-Geba et al., 2016), nutritional 
status (e.g., fasting, feeding, dietary composition) 
(Small and Peterson, 2005; Rolland et al., 2015; Tu et 
al., 2015), and other procedures related to fi sh culture 
(transport, manipulation, stocking density) (Rotlant et 
al., 2001; Wilkinson et al., 2006). For instance, 
 Oncorhynchus   mykiss  had higher levels of  IGF - 1  
mRNA in muscle at 8°C than at 16°C (Gabillard et al., 
2003). Prolonged starvation led to a signifi cant 
decrease in circulating IGF-1 and IGF-2 in Atlantic 
salmon (Wilkinson et al., 2006) and reductions in 
hepatic  IGF - 1  mRNA expression and pituitary  GH  
mRNA expression in  Ictalurus   punctatus  (Small and 
Peterson, 2005). Furthermore, dietary protein 
composition was found to be closely correlated with 
circulating GH and IGF-1 levels or the levels of their 
mRNAs in  Carassius   auratus  (Tu et al., 2015), 
 O .  niloticus  (Qiang et al., 2012), and rainbow trout 
(Rolland et al., 2015). Handling and confi nement 
resulted in reduced levels of circulating GH in  Sparus  
 aurata  (Rotlant et al., 2001), GH, IGF-1, and IGF-2 in 
 Salmo   salar , and IGF-1 and IGF-2 in rainbow trout 
(Wilkinson et al., 2006). Thus, it has been speculated 
that the GH/IGF axis plays extensive roles in fi sh 
under diff erent environmental conditions and 
physiological status. However, few studies have 
analyzed the eff ect of stocking density and crowding 

stress on the levels of these hormones in plasma and 
on the transcript levels of their encoding genes.  

 Stocking density is a critical husbandry factor in 
intensive aquaculture. High stocking densities can 
cause chronic stress and aff ect the growth, welfare, 
and productivity of farmed fi sh (Herrera et al., 2012; 
Menezes et al., 2015; Ni et al., 2016). Several studies 
have indicated that inappropriate stocking densities 
negatively aff ect the growth performance of fi sh 
species including  S .  salar  (Adams et al., 2007), 
 Arapaima   gigas  (de Oliveira et al., 2012), 
 Scophthalmus   rhombus  (Herrera et al., 2012),  Brycon  
 insignis  (Tolussi et al., 2010), and  Argyrosomus   regius  
(Millán-Cubillo et al., 2016). The growth performance 
and the expression of GH in  Rhamdia   quelen  
signifi cantly decreased with increased stocking 
density (Menezes et al., 2015), suggesting that 
crowding stress was closely related to  GH  expression. 
Furthermore, high stocking densities have been 
shown to negatively aff ect diff erent metabolic 
pathways related to carbohydrate, lipid, and protein 
metabolism by activating stress responses in fi sh 
(Costas et al., 2008; Laiz-Carrión et al., 2012). For 
instance, Vargas-Chacoff  et al. (2014) reported that 
 Eleginops   maclovinus  maintained at a high stocking 
density had low levels of plasma glucose, triglyceride, 
and lactate. Inappropriate stocking density was also 
shown to alter the metabolism of triglycerides in 
 Salvelinus   fontinalis  (Vijayan et al., 1990). However, 
low stocking densities can lead to higher production 
costs and lower profi tability for the industry due to 
the inappropriate use of space (Millán-Cubillo et al., 
2014). For these reasons, research on stocking density 
is attracting more attention. It is important to monitor 
the physiological responses and to explore the 
molecular mechanisms related to adaptation to 
crowding stress to ensure optimal health and welfare 
of farmed fi sh (Salas-Leiton et al., 2010).  

 Amur sturgeon ( Acipenser   schrenckii  Brandt) is a 
riverine-resident species distributed in the Amur 
River. It has important economic value in the 
production of caviar and fl esh; therefore, it has 
become an important breeding sturgeon species in 
China (Zhuang et al., 2002; Li et al., 2012). Previous 
studies have reported that stocking density aff ects the 
growth,  physiology,  and immunity of sturgeons 
(Jodun et al., 2002; Ni et al., 2014, 2016). However, 
there have been no reports on changes in the GH/IGF 
axis and how such changes modulate fi sh growth 
under crowding stress, or on  IGF - 2  expression in 
sturgeon. The aim of this study was to elucidate the 
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eff ects of stocking density on the growth performance 
of Amur sturgeon and to explore the roles of GH, 
GHR, and IGFs in regulating growth under crowding 
stress. We cloned  GH  and  IGF - 2  sequences from 
Amur sturgeon, measured the levels of GH, IGF-1, 
and IGF-2 in serum, and monitored changes in the 
transcript levels of  GH  in the pituitary and of  GHR , 
 IGF - 1 ,  IGF - 2  in the liver and muscle of fi sh grown 
under diff erent stocking densities. 

 2 MATERIAL AND METHOD 

 2.1 Experimental procedures 

 Amur sturgeons (body weight, 225.46±32.28 g; 
length, 31.32±2.74 cm) were acquired from the 
Shandong Xunlong Fish Culture Farm (eastern 
China), where the trials were conducted. Before the 
experiments, the fi sh were maintained for 2 weeks in 
concrete ponds with continuously running water. 
Then, 2 700 fi sh were randomly selected and 
transferred to nine square concrete ponds (4.4 m× 
4.4 m×0.45 m) at initial densities of 5.5 (low stocking 
density, LSD), 8.0 (middle stocking density, MSD) 
and 11.0 kg/m 3  (high stocking density, HSD) each 
with three replicates. The experimental ponds were 
supplied with continuous water fl ow (900 L/h) to 
maintain the water quality. The physicochemical 
parameters of the water in the ponds were maintained 
at satisfactory levels throughout the experiments: 
water temperature varied from 13.3°C to 17.2°C, 
dissolved oxygen (DO) from 7.2 to 9.6 mg/L, and pH 
from 7.8 to 8.3. During the 70-day experimental 
period, fi sh were fed three times a day with dry 
commercial feed (Ningbo Tech-Bank, Yuyao, China) 
at 1.5% (w/w) of total fi sh biomass. Body weight was 
measured (50 fi sh in each pond) and fi sh were sampled 
(6 per pond) on days 10, 30, 50, and 70. All fi sh were 
anaesthetized with 200 mg/L tricaine methane 
sulphonate (MS-222, Sigma, St. Louis, MO, USA) 
and sampled within 15 min. Blood samples were 
collected from the caudal vein, and the serum was 
obtained by centrifugation at 12 000× g  for 10 min. 
Heart, liver, kidney, intestine, stomach, brain, 
pituitary, fi n, gill, spleen, gonad, and muscle tissues 
were collected from fi sh from each group, immediately 
frozen in liquid nitrogen, and stored at -80°C until 
total RNA extraction. 

 2.2 Measurement of growth performance  

 At the beginning and end of the trial, the following 
biometric parameters were obtained: initial body 

length (IBL) (cm), initial body weight (IBW) (g), 
fi nal body length (FBL) (cm), and fi nal body weight 
(FBW) (g). Specifi c growth rate (SGR), daily weight 
gain (DWG), feed conversion rate (FCR), and 
condition factor (K) were calculated as follows: SGR 
(%)=100×(lnFBW–lnIBW)/time (d); DWG (g/
(fi sh∙d))=(FBW–IBW)/IBW/days×100; FCR=[weight 
of feed (g)/weight gain (g)];  K =weight/length 3 ×100. 

 2.3 Muscle composition analyses 

 Muscle samples of Amur sturgeon at diff erent 
stocking densities (four fi sh per group) were analyzed 
to determine dry matter, crude lipid, crude protein, 
and ash (AOAC, 1995). Dry matter was determined 
by drying the muscle samples to constant weight at 
105°C. Crude lipid was quantifi ed by the Soxhlet 
ether extraction method using the Soxtec System 
HT6 (Tecator, Höganäs, Sweden). Crude protein was 
examined by the Kjeldahl method using an Auto 
Kjeldahl System (FOSS KT260, Hillerød, Denmark) 
and estimated by multiplying the nitrogen content by 
a factor of 6.25. Ash was measured using the 
combustion method in a muffl  e furnace at 550°C for 
12 h.  

 2.4 Serum analyse 

 Blood samples (six fi sh per group) were collected 
from the caudal vein of fi sh and centrifuged to obtain 
serum for biochemical analyses. Serum samples were 
analyzed to determine the concentrations of glucose 
(GLU, mmol/L), total cholesterol (TC, mmol/L), 
triacylglycerol (TG, mmol/L), lactate (mmol/L), and 
total protein (TP, g/L) with commercial reagent kits 
according to their recommended protocols using an 
BS180 Automated Biochemistry Analyzer (ShenZhen 
Mindry Bio-Medical Electronicsco., LTD, Guangzhou, 
China). 

 The serum levels of cortisol and IGF-1 were 
assayed using Iodine [I 125 ] Radioimmunoassay (RIA) 
Kits (Tianjin Nine Tripods Medical & Bioengineering 
Co. Ltd., Tianjin, China) following the manufacturer’s 
instructions. The assay sensitivity was 0.21 mg/dl. 
The inter-assay variation was 7.3% and the intra-
assay variation was 11.6%. The GH and IGF-2 
concentrations in fi sh serum were determined by 
enzyme-linked immunosorbent assay using a 
commercial kit (Nanjing Jiancheng Bioengineering 
Co. Ltd., Nanjing, China). Absorbance was measured 
spectrophotometrically at 450 nm. All samples were 
measured twice and the results shown are average 
values. 
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 2.5 Molecular cloning of  GH  and  IGF  -  2  cDNAs 

 Total RNA was extracted from tissue samples 
using RNAiso reagent (TaKaRa, Otsu, Japan) 
following the manufacturer’s protocol. The 
concentration and purity of RNAs were assessed 
using a Biodropsis BD-1000 nucleic acid analyzer 
(OSTC, Beijing), and RNA integrity was confi rmed 
by 1.5% agarose gel electrophoresis. Before fi rst-
strand cDNA was synthesized, gDNA was removed 
using a PrimeScript RT reagent kit with gDNA Eraser 
(TaKaRa). Then, for each sample, fi rst-strand cDNA 
was synthesized with 1 μg total RNA using random 
primers and Reverse Transcriptase M-MLV (TaKaRa) 
in a 20-μL reaction system. 

 To isolate the  GH  and  IGF - 2  cDNAs, a pair of 
degenerate primers was designed for each gene 
(Table 1) based sequences of these genes from other 
species. Then, cDNA fragments of  GH  and  IGF - 2  of 
Amur sturgeon were obtained by PCR amplifi cation. 
The PCR reaction was performed in a fi nal volume of 
25 μL containing 1 μL cDNA, 2 μL 10 mmol/L dNTP 
mix, 2.5 μL reaction buff er, 0.5 μL each primer 
solution (Table 1), 0.2 μL Taq polymerase (TaKaRa), 
and 18.3 μL nuclease-free water. The PCR products 
were analyzed on a 1.5% w/v agarose gel and 
visualized using ethidium bromide staining. Putative 
gene fragments were cloned into the PEASY-T1 

vector (Tiangen, Beijing, China), transformed into 
 Escherichia   coli  (Trans5α, Transgen, Beijing, China) 
and sequenced with an ABI3730XL sequencer 
(Applied Biosystems, Foster City, CA, USA). 

 Based on the obtained  GH  and  IGF - 2  cDNA 
fragments, gene-specifi c primers were designed to 
amplify the full-length cDNAs by PCR (Table 1). A 
SMART™ RACE cDNA amplifi cation kit (Clontech, 
Palo Alto, CA USA) was used for the 3  - and 5  -RACE 
reactions. The PCR products corresponding to the 
predicted length were isolated, purifi ed, cloned into 
vectors, and sequenced as described above. 

 2.6 Sequence and phylogenetic analyses of  GH  and 
 IGF  -  2  

 To examine the similarity of Amur sturgeon  GH  
and  IGF - 2  to those of other species, multiple sequence 
alignments of predicted amino acid sequences of GH 
and IGF-2 were produced using ClustalX version 
1.83. Signal peptide regions, potential N-glycosylation 
sites, and other functional sites were predicted using 
SignalP version 3.0 (http://www.cbs.dtu.dk/services/
SignalP/), ExPASy Molecular Biology Server (http://
www.expasy.org/), and Gene Runner version 3.02 
(Hasting Software, Hasting, USA). Phylogenetic 
analyses based on  GH  and  IGF - 2  amino acid 
sequences were conducted using the neighbor-joining 

 Table 1 Primer sequences used for gene cloning and mRNA expression analyses of  GH ,  GHR ,  IGF  -  1  ,  and  IGF  -  2  

 Primer name  Sequence (5′→3′)  Description 

 GH-F  TCTGAGACCATCCCTGCTCCCACT  Amplifi cation of cDNA fragment 

 GH-R  TACAACTTCCCATTGCTATGCCTTT  Amplifi cation of cDNA fragment 

 IGF-2-F  GGTGGACGCCCTGCACTTAGTCTGTG  Amplifi cation of cDNA fragment 

 IGF-2-R  GGAAGATAGCCTGCTCCTGGACCTACATAT  Amplifi cation of cDNA fragment 

 GH 5′R  GTGAAAACACGGCTCAGGGAC   5 ' -RACE  

 GH 3′R  TCAACCTAAGAAACGATGATGC  3 ' -RACE  

 IGF-2 5′R1  TGGCTTTCAGGATAGATGGGAC  5 ' -RACE  

 IGF-2 3′R1  GGGGTCCCATCTATCCTGAA  3 ' -RACE  

 GH-e-F  TGGAGGAAGGCATTGTG   RT-PCR and qPCR primer 

 GH-e-R  AGCATCATCGTTTCTTAGGT   RT-PCR and qPCR primer 

 GHR-e-R  TGTGGGTGGAGTTCATAGAGC  RT-PCR and qPCR primer 

 GHR-e-R   GCAGTTGCCATTCAGGTTC  RT-PCR and qPCR primer 

 IGF-1-e-F  TCTTCAGTTTGTGTGTGGGG  RT-PCR and qPCR primer 

 IGF-1-e-R  GTGAGGATTTGGCTGGCTT  RT-PCR and qPCR primer 

 IGF-2-e-F  ACGAGGGGTCCCATCTATC  RT-PCR and qPCR primer 

 IGF-2-e-R  TGTAACGGGCTGTTTGCTT  RT-PCR and qPCR primer 

 18S-e-F  GCCACACGAGATGGAGCA  Reference primer 

 18S-e-R  CCTGTCGGCGAAGGGTAG  Reference primer 
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method with MEGA 6.0 software using 1 000 
bootstrap replicates. 

 2.7 Tissue distribution patterns of  GH  and  IGF  -  2   
 transcripts 

 The expression patterns of  GH  and  IGF - 2  mRNAs 
in various tissues of Amur sturgeon were examined 
by RT-PCR using 18S ribosomal RNA ( 18S ) as the 
internal control. Table 1 lists the primers used for 
these analyses. Total RNAs were extracted from 
heart, liver, kidney, spleen, stomach, intestine, gonad 
adipose tissue, fi n, gill, muscle, brain, and pituitary 
tissues using RNAiso reagent (TaKaRa). The PCR 
cycling conditions were as follows: 95°C for 5 min; 
35 cycles of 95°C for 5 s, 60°C for 35 s, and 72°C for 
30 s; and 72°C for 10 min. The PCR products were 
checked on a 1.5% agarose gel, pre-stained with 
ethidium bromide, and visualized using the ChampGel 
5000 gel imaging and analysis system (Beijing Sage 
Creation Science Co. Ltd., Beijing, China). 

 2.8 Quantitative real-time PCR analyses of genes 
related to GH/IGF axis  

 The transcript levels of  GH ,  GHR ,  IGF - 1 , and 
 IGF - 2  in various tissues of fi sh were determined by 
quantitative real-time PCR (qRT-PCR). The primers 
were designed based on the cloned sequences or those 
in Genbank using Primer5 software (Premier Biosoft 
International) (Table 1). All the cDNA products were 
diluted to 250 ng/μL. Each 20-μL qRT-PCR reaction 
mixture consisted of 2 μL template cDNA, 10 μL 

SYBR ® FAST qPCR Master Mix (2×), 0.4 μL each 
primer, 0.4 μL ROX, and 6.8 μL nuclease-free water. 
The PCR amplifi cations were performed using the 
StepOne Plus Real-Time PCR system (Applied 
Biosystems) under the following conditions: 95°C for 
2 min, followed by 40 cycles at 95°C for 15 s, 
annealing at 55°C (for  GH ,  GHR ) or 60°C (for  IGF - 1 , 
 IGF - 2 ) for 15 s, and fi nal extension at 72°C for 2 min. 
Serially diluted cDNA samples from the control were 
used to calibrate the results. The relative mRNA 
levels of genes were normalized by the comparative 
2 -ΔΔ  C  t  method using 18S as the internal control. 

 2.9 Statistical analysis 

 All data were determined by SPSS 17.0 and are 
expressed as mean values±standard error. One-way 
analysis of variance (ANOVA) followed by Duncan’s 
multiple range tests were used to analyze the 
experimental data. Signifi cant diff erences were 
accepted when  P <0.05. 

 3 RESULT 

 3.1 Eff ects of stocking density on growth performance 

 The body weight of fi sh in all three treatments 
increased during the 70-day experiment (Fig.1a). At 
days 10 and 30, the average body weight of sturgeon 
did not diff er signifi cantly among the three stocking 
densities. However, at day 70, the FBW was highest 
in the LSD group, followed by the MSD and then the 
HSD group. A similar trend was observed for SGR. 
Fish in the HSD group had signifi cantly lower SGR 
than those of fi sh in the LSD and MSD groups after 
50 and 70 days of growth.  

 Table 2 summarizes the growth parameters of 
sturgeons after 70 days of culture. The initial stocking 
density signifi cantly aff ected growth performance. 
The FBW, FBL, SGR, DWG, and K were signifi cantly 
lower in the HSD group than in the LSD group at day 
70. However, the FCR was signifi cantly higher in the 
HSD group than in the LSD and MSD groups at day 
70. 

 3.2 Serum biochemistry 

 The serum glucose concentration was positively 
related to stocking density (LSD < MSD < HSD), 
with maximum values in the HSD group (Table 3). 
The concentrations of cholesterol, triglycerides, and 
total protein in serum showed the opposite trend, with 
signifi cantly lower levels in the HSD group than in 
the LSD group after 70 days of culture. 

 Table 2 Growth parameters of Amur sturgeon after 70 days 
of growth at diff erent stocking densities 

 Item 
 Experiment treatments 

 LSD  MSD  HSD 

 Initial body weight (IBW, g)  229.17±9.40  220.83±3.50  227.50±4.13 

 Final body weight (FBW, g)  407.22±7.52 a   383.33±5.00 b   364.45±6.31 c  

 Initial body length (IBL, cm)  31.70±1.47  30.98±1.16  31.29±1.47 

 Final body length (FBL, cm)  39.75±1.47 a   38.89±1.56 ab   38.20±0.88 b  

 Specifi c growth rate (SGR, %/d)  0.82±0.03 a   0.79±0.02 a   0.67±0.02 b  

 Daily weight gain (DWG, g/(n·d))  2.54±0.12 a   2.32±0.07 a   1.96±0.09 b  

 Feed conversion ratio (FCR)  1.05±0.05 a   1.15±0.03 a   1.38±0.07 b  

 Condition factor ( K , g/cm 3 )  0.70±0.04 a   0.67±0.03 a   0.61±0.02 b  

 LSD: low stocking density; MSD: middle stocking density; HSD: high 
stocking density. SGR: specifi c growth rate (%)=100×(lnFBW–lnIBW)/
time (d); DWG: daily weight gain (g/(fi sh∙d))=(FBW–IBW)/IBW/
days×100; FCR: feed conversion ratio= F / n (FBW–IBW),  n =number of fi sh; 
condition factor ( K )=weight/length 3 ×100; data are means±SEM. Values not 
sharing a common letter are signifi cantly diff erent ( P <0.05).  
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 The lactate concentration did not diff er signifi cantly 
among the three groups. The serum cortisol level 
increased during the fi rst 50 days, and then decreased 
until day 70. The serum cortisol concentration did not 
diff er signifi cantly among the three stocking densities 
in the fi rst 30 days. At days 50 and 70, the serum 
cortisol concentration was markedly higher in the 
HSD group than in the LSD and MSD groups (Fig.2). 

 3.3 Muscle composition of Amur sturgeon  

 The moisture content of Amur sturgeon’ muscle at 
all three stocking densities decreased during the 
experimental period (Fig.3a). At day 70, the moisture 
content was signifi cantly higher in the HSD group 
than in the LSD and MSD groups. The ash content did 
not diff er signifi cantly among the three stocking 
densities during the experiment (Fig.3b). At days 10, 
30, and 50, the crude lipid content (Fig.3c) and crude 
protein content (Fig.3d) in muscle did not diff er 
signifi cantly among the three groups. At day 70, 
however, the crude lipid and protein content in muscle 
were signifi cantly lower in the HSD group than in the 
LSD and MSD groups. 

 3.4 Molecular characterization and phylogenetic 
analysis  GH  and  IGF  -  2  

 The full length cDNAs of  GH  and  IGF - 2  were 
obtained from Amur sturgeon by assembling the core 
fragment, 5′-, and 3′-end sequences. The complete 
nucleotide sequence of  GH  (GenBank accession 
number: KC460212) was 995 bp long, and contained 
a 645-bp open reading frame (ORF) encoding a 
protein of 214 amino acids, a 52-bp 5′-untranslated 
terminal region (UTR), and a 298-bp 3′-UTR region 
with a canonical polyadenylation signal sequence 
AATAAA and a poly(A) tail. The sequence of  GH  
contained four characteristic cysteine residues 
(Cys76, Cys187, Cys204, and Cys212). The cDNA of 
 IGF - 2  was 1 207 bp long (Genbank accession number: 
KC484697) and contained a 651-bp ORF encoding a 
putative protein of 216 amino acids, as well as a 131-
bp 5  -UTR and a 425-bp 3  -UTR. The signal peptide 
of  IGF - 2  consisted of 47 amino acids. The six cysteine 
residues (Cys64, Cys76, Cys103, Cys104, Cys108, 
and Cys117) in  IGF - 2  were located at conserved 
positions. The  IGF - 2  of Amur sturgeon contained B, 
C, A, D, and E domains consisting of 32, 11, 21, 6, 
and 94 amino acids, respectively. 

 To further understand the structural similarities at 
the protein level, the predicted amino acid sequences 
of GH and IGF-2 of Amur sturgeon were compared 
with those from other vertebrates using ClustalX 
(Fig.4). Multiple sequence alignments of GH revealed 
high sequence identity to GHs from other species. 
The predicted Amur sturgeon GH showed the highest 
homology with that of Siberian Sturgeon ( Acipenser  
 baerii ) (97%) (Fig.4a). The deduced amino acid 
sequence of Amur sturgeon IGF-2 showed similarities 
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ranging from 50% (to mouse IGF-2) to 66% (to 
Atlantic Salmon IGF-2) (Fig.4b). The A and B 
domains were more conserved than other domains in 
IGF-2. 

 A phylogenetic analysis was conducted to study 
the evolutionary relationships between Amur sturgeon 
 GH  and  IGF - 2  and those of other vertebrates (Fig.5). 
The tree showed that Amur sturgeon  GH  was closely 
related to that of Siberian Sturgeon, which belongs to 
the same family (Acipenseriformes). Notably, 
sturgeon  GHs  did not form a clade with other fi sh 

subgroups, but grouped into a clade with  GHs  from 
mammals, birds, and amphibians (Fig.5a). Amur 
sturgeon  IGF - 2  grouped with fi sh  IGF - 2s  and showed 
close relationships with  IGF - 2s  of  S .  salar  and 
 Ctenopharyngodon   idella  (Fig.5b). The phylogenetic 
relationships based on the  IGF - 2  amino acid 
sequences were consistent with the traditional 
classifi cation.  

 3.5 Tissue distribution of  GH  and  IGF  -  2  transcripts 

 The levels of  GH  and  IGF - 2  mRNA were 

 Fig.4 Continued 
b

Turbot              

Gilthead seabream   

Atlantic salmon       

Grass carp            

Zebrafish   

Channel catfish    

Amur sturgeon        

Chicken      

Human        

Mouse             

Western clawed frog

Turbot              

Gilthead seabream

Atlantic salmon  

Grass carp              

Zebrafish   

Channel catfish     

Amur sturgeon        

Chicken          

Human           

Mouse     

B domain 
SP

Western clawed frog   

B domain C domain        A domain  D domain  E domain

Turbot                 

Gilthead seabream

Atlantic salmon

Grass carp                

Zebrafish   

Channel catfish        

Amur sturgeon       

Chicken      

Human            

Mouse             

Western clawed frog  

  Fig.4 Multiple sequence alignments of Amur sturgeon  GH  (a) and  IGF  -  2  (b) amino acid sequences with those of other species 
Signal peptides are underlined. Conserved cysteines are shaded. The asterisk indicates the stop codon. Predicted glycosation site are indicated in solid 
box. The GenBank Accession Numbers used are as follows: Amur sturgeon  GH : AGI96360; Siberian sturgeon  GH : ACJ60679; Chicken  GH : NP_989690; 
Western clawed frog  GH : NP_001083848; Human  GH : AAA98618; Mouse  GH : AAH61157; Gilthead seabream  GH : AAB19750; Atlantic salmon  GH : 
AAA49558; Grass carp  GH : ABV74334; Channel catfi sh  GH : AAC60745; Amur sturgeon  IGF - 2 : AGJ72849; Turbot  IGF - 2 : AEJ89913; Gilthead seabream 
 IGF - 2 : AAY46224; Atlantic salmon  IGF - 2 : ABY88873; Grass carp  IGF - 2 : ABK55615; Zebrafi sh IG2: NP_571508; Channel catfi sh  IGF - 2 : NP_001187875; 
Chicken  IGF - 2 : NP_001025513; Human  IGF - 2 : ABD93451; Mouse  IGF - 2 :AAH53489; Western clawed frog  IGF - 2 : AAI56000. 



Vol. 36964 J. OCEANOL. LIMNOL., 36(3), 2018

determined in diff erent tissues of Amur sturgeon 
(Fig.6). Transcripts of  GH  were detected only in the 
pituitary (Fig.6a), whereas transcripts of  IGF - 2  were 
detected in all examined tissues of Amur sturgeon. 
The highest transcript level of  IGF - 2  was in the 
kidney, followed by gonad adipose tissue, the liver, 
gill, and stomach, with the lowest transcript levels in 
the brain and heart (Fig.6b). 

 3.6 Serum GH, IGF-1 and IGF-2 

 The eff ects of stocking density on serum GH, IGF-
1, and IGF-2 concentrations in serum are shown in 
Fig.7. During the fi rst 50 days, serum GH was not 
aff ected by stocking density. However, by day 70, 
serum GH concentrations were lower in the HSD 
group than in the other groups (Fig.7a). A similar 

trend was observed for IGF-1, with no signifi cant 
diff erences among the three groups during the fi rst 30 
days. At days 50 and 70, the IGF-1 concentration was 
lower in the HSD group and higher in the LSD group, 
showing an inverse correlation with stocking density 
(Fig.7b). The serum IGF-2 concentration did not 
diff er signifi cantly among the three groups (Fig.7c). 

 3.7 Transcript levels of  GH ,  GHR ,  IGF  -  1  and  IGF  -
  2    in various tissues 

 To further evaluate variations at the molecular 
level, the transcript levels of  GH ,  GHR ,  IGF - 1 , and 
 IGF - 2  in various tissues of Amur sturgeon were 
examined by quantitative real-time PCR (Fig.8). The 
transcript level  GH  in the pituitary decreased with 
increasing stocking density (Fig.8a), and was 
approximately two-fold higher in the LSD group than 
in the HSD group. The expression of hepatic  GHR  
showed a similar profi le, with lower  GHR  mRNA 
levels in the HSD group (Fig.8b). In addition, 
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 Table 3 Concentrations of metabolites in serum of Amur 
sturgeon after 70 days of growth at diff erent 
stocking densities 

 Parameters 
 Stocking density  

 LSD  MSD  HSD 

 Glucose (mmol/L)  1.86±0.19  2.00±0.36  2.05±0.18 

 Total protein (g/L)  26.50±1.63 a   26.22±2.62 ab   23.89±1.67 b  

 Cholesterol (mmoL/L)  2.77±0.58 a   2.59±0.69 ab   2.02±0.45 b  

 Triglyceride (mmoL/L)  7.06±0.64 a   6.60±0.71 ab   6.04±0.43 b  

 Lactate (mmoL/L)  1.27±0.24  1.18±0.36  1.37±0.19 

 Values are means±SEM. Values followed by diff erent letters are 
signifi cantly diff erent ( P <0.05). 
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increased stocking density markedly down-regulated 
the expression of  IGF - 1  in the liver and muscle 
(LSD>MSD>HSD) (Fig.8c). The expression level of 
 IGF - 2  in the liver was signifi cantly lower in the HSD 
group than in the LSD and MSD group. However, the 
transcript levels of  IGF - 2  mRNA in muscle did not 
diff er signifi cantly among the three groups (Fig.8d).  

 4 DISCUSSION 

 The initial stocking density is an important factor 
in intensive aquaculture. An inappropriate stocking 
density negatively aff ects the growth and metabolism 
of fi sh at diff erent stages of development, leading to 
reduced yields and profi tability (Ambrosio et al., 

2008; de las Heras et al., 2015). Therefore, it is 
important to determine the optimum stocking densities 
at diff erent stages of the life cycle for the healthy and 
sustainable development of farmed fi sh (Rowland et 
al., 2006). In this study, the eff ect of stocking density 
on sturgeon growth could be separated into two 
diff erent phases. In the fi rst phase (days 10 and 30), 
growth parameters including SGR, DWG, body 
weight, and body length were similar among all three 
experimental groups. In the second phase (from day 
50 onwards), Amur sturgeon showed density-
dependent growth performance; that is, the values of 
these parameters were lower in the HSD group than in 
the other two groups. These results are consistent with 
those previously reported for  S .  salar  (Hosfeld et al., 
2009),  O .  niloticus  (Telli et al., 2014), and  Chelon  
 labrosus  (de las Heras et al., 2015), indicating that the 
infl uence of stocking density on fi sh growth is 
dynamic and increases over time. The highest FCR 
was in the HSD group. In our trial, food consumption 
was not a limiting factor during the experiment, 
because fi sh were fed three times per day and 
proportionally to their body mass. Thus, we speculate 
that less feeding energy was used for growth of Amur 
sturgeon at a high stocking density. Similar trends 
have been reported for  O .  niloticus  grown at diff erent 
stocking densities (Telli et al., 2014). 

 A high stocking density can cause chronic crowding 
stress and disturb metabolism in intensive fi sh rearing 
(Sangiao-Alvarellos et al., 2005; de las Heras et al., 
2015; Yarahmadi et al., 2016). Previous studies have 
shown that short- and long-term crowding stress can 
elevate plasma cortisol levels (primary stress 
response) and consequently trigger metabolic 
reorganization (secondary stress response) and reduce 
the growth rate (tertiary stress response) of fi sh 
(Mommsen et al., 2001; Ellis et al., 2002). Ruane et 
al. (2002) subjected  C .  carpio  grown at high- and 
low-densities to a confi nement treatment, and found 
that plasma cortisol levels were higher in the fi sh 
from the high-density treatment. Iguchi et al. (2003) 
and Lupatsch et al. (2010) also found that a higher 
stocking density resulted in higher cortisol levels in 
 Plecoglossus   altivelis  and  Danio   rerio , respectively. 
In our study, cortisol concentrations increased with 
increasing stocking density, suggesting that a high 
stocking density induced a chronic stress response in 
Amur sturgeon. Notably, serum cortisol levels 
decreased in all treatments from day 50 to day 70. 
This was probably because of acclimation to the 
crowding environment, as indicated by the return of 
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cortisol concentrations to relatively normal levels. 
Further studies are required to verify this hypothesis.  

 Stress caused by a high stocking density can 
enhance the consumption of energy reserves and the 
reallocation of metabolic energy. These changes can 
interfere with other physiological processes such as 
growth and immunity (Laiz-Carrión et al., 2009). 
Iguchi et al. (2003) reported that the concentrations of 
plasma glucose and lactate, which are metabolic 
indicators of the secondary stress response, increased 
under stress conditions. However, the serum glucose 
and lactate concentrations did not diff er signifi cantly 
among the three stocking densities in the present study. 
These changes do not appear to be consistent among 
farmed fi sh, but instead appear to be species-specifi c. 
Vargas-Chacoff  et al. (2014) reported lower plasma 
glucose and lactate levels in  E .  maclovinus  at higher 
stocking densities. The diff erences among species 
may be due to their diff erent sensitivities and responses 
to crowding stress. In addition, compared with fi sh in 
the LSD and MSD groups, those in the HSD group 
showed signifi cantly lower serum triglyceride and 
protein levels, indicating that crowding enhanced 
energy demands and mobilization. Similar results 
were reported for  E .  maclovinus  (Vargas-Chacoff  et 
al., 2014), in which high stocking density signifi cantly 
aff ected triglyceride levels. In addition, intense social 

interactions at a high stocking density might contribute 
to increased metabolic demands and retarded growth 
(McKenzie et al., 2012; Liu et al., 2015). 

 Body composition and the condition factor roughly 
indicate the growth profi les and body energy stores of 
fi sh (Goede and Barton, 1990). Previous studies have 
demonstrated that stocking density may aff ect the 
body composition of various fi sh species (Piccolo et 
al., 2008; Ni et al., 2016). For example, moisture, ash, 
and crude protein contents in muscle of  Solea   solea  
were not aff ected by stocking density, while the crude 
lipid content was lower in fi sh at a high stocking 
density (Piccolo et al., 2008). In this study, muscle 
composition showed similar variations among the 
three groups in the fi rst 30 days. However, the crude 
lipid and protein content in muscle was signifi cantly 
lower in the HSD group than in the other two groups 
after 70 days of growth. Also, at the end of the 70-day 
experiment, the condition factor was signifi cantly 
lower in the HSD group than in the LSD group. Similar 
trends were observed in sturgeon kept at a high 
stocking density (Rafatnezhad et al., 2008; Ni et al., 
2016). A high stocking density can activate a series of 
defense mechanisms, diverting energy from growth to 
other stress-response and energy-consuming processes 
(Lupatsch et al., 2010). The decreased contents of 
some muscle components and the reduced condition 
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factor in fi sh in the HSD group in this study appeared 
to be related to more energy consumption caused by 
crowding stress, leading to reduced energy available 
for growth. In general, a high stocking density aff ected 
the metabolic pathways related to lipid and protein 
metabolism and resulted in the mobilization of energy 
to meet the increased energy requirements imposed by 
stress. Further, Amur sturgeon in the LSD group 
showed not only superior growth performance, but 
also better nutrient composition.  

 The signifi cant variation in the growth performance 
of Amur sturgeon among the diff erent stocking 
densities prompted our interest in the expression of 
genes related to the GH/IGF axis, which plays a vital 
role in the neuroendocrine regulation of vertebrate 
growth (Patel et al., 2005; Beckman, 2011; de las 
Heras et al., 2015). First, we cloned and analyzed  GH  
and  IGF - 2  sequences from Amur sturgeon, and 
detected their expression patterns in diff erent tissues. 
The complete coding region of  GH  encoded a putative 
protein of 214 amino acids with four cysteine residues. 
These cysteine residues participate in the formation 
of two disulfi de bonds, which are probably related to 
tertiary folding and the biological activity of GH 
(Chang et al., 1992; Deng et al., 2014). The deduced 
amino acid sequence of  GH  showed relatively high 
sequence identity to those of other teleosts, suggesting 
that its structure and function were evolutionarily 
conserved. Interestingly, a phylogenetic analysis of 
the  GH  sequence showed that species in the 
Acipenseriformes group formed a single cluster 
separate from other teleosts, and closer to amphibians 
and endotherms, indicating their special status in the 
evolutionary tree of vertebrates. The  IGF - 2  cDNA 
from Amur sturgeon encoded a putative protein of 
216 amino acids. This is the fi rst report of an  IGF - 2  
cDNA sequence from a member of the Acipenseridae. 
The putative IGF-2 sequence included six cysteine 
residues. Most of the cysteine residues in IGF proteins 
are involved in binding to receptors or IGF-binding 
proteins (Duval et al., 2002). In the phylogenetic 
analysis of  IGF - 2 , the Amur sturgeon sequence was 
most similar to those from other fi sh species and less 
similar to those from vertebrates, consistent with the 
phylogenetic distances among these species. The RT-
PCR analyses demonstrated that  GH  was exclusively 
expressed in the pituitary of Amur sturgeon. This 
fi nding is consistent with those of Li et al. (2005), 
who reported that the expression of  GH  mRNA was 
dominantly detected in the pituitary of  E .  coioides . 
This result is not unexpected, because the pituitary is 

known to be the main site of GH production and 
secretion. In contrast,  IGF - 2  was expressed 
ubiquitously in all analyzed tissues, indicating that 
this hormone may exert important physiological 
functions in bony fi sh. As in  O .  niloticus  (Caelers et 
al., 2004),  D .  labrax  (Terova et al., 2007), and 
 Umbrina   cirrosa  (Patruno et al., 2006), there were 
high levels of  IGF - 2  mRNAs in the liver, adipose 
tissue, and muscle of Amur sturgeon, indicating a 
possible role of IGR-2 in metabolism. Transcripts of 
 IGF - 2  were also detected in the kidney and gill in our 
study. These results are consistent with those reported 
for  Solea   senegalensis  (Funes et al., 2006) and  P . 
 auriga  (Ponce et al., 2008), suggesting that IGF-2 
may also play roles in excretion and osmoregulation. 

 As in other vertebrates, the growth hormone/
insulin-like growth factor (GH/IGF) axis (including 
 GH ,  GHR ,  IGF - 1 ,  IGF - 2 ) participates in regulating 
many growth-promoting processes in fi sh (Reindl and 
Sheridan, 2012). This axis and its components are 
infl uenced by environmental conditions and nutrition 
(Duan, 1998; Hanson et al., 2014; Menezes et al., 
2015; Tu et al., 2015). In fi sh,  GH  is closely related to 
somatic growth and developmental processes. For 
example,  GH  transcription was higher in fast-growing 
females than in males in  Cynoglossus   semilaevis  (Ma 
et al., 2012) and  Anguilla   anguilla  (Degani et al., 
2003). Furthermore, the transcript levels of  GH  
decreased with increased stocking density and fasting 
conditions in  R .  quelen  (Menezes et al., 2015). Similar 
trends were observed in our study; that is, there were 
lower levels of  GH  expression and serum GH in the 
HSD group than in the LSD or MSD groups at the end 
of the 70-day experiment. These changes may be 
responsible for the reduced growth of Amur sturgeon 
in the HSD group. In fi sh, GH is associated with and 
aff ected by cortisol (de las Heras et al., 2015). In the 
current study, the increased cortisol level in the HSD 
group may account for the changes in circulating GH 
and  GH  transcript levels. 

 The biological actions of growth hormones are 
mediated by the transmembrane growth hormone 
receptor ( GHR ) (Reindl and Sheridan, 2012). In 
mammals, the binding of growth hormone to its 
receptor causes rapid activation of some signal 
transduction pathways such as the tyrosine kinase 
JAK2 (Han et al., 1996), mitogen-activated protein 
kinases, and signal transducer and activator of 
transcription pathways (Carter-Su et al., 1996). These 
pathways then regulate cell growth and diff erentiation, 
and stress adaptation to the environment. Environmental 
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factors such as temperature, photoperiod, salinity, and 
nutritional status have been shown to aff ect  GHR  
expression patterns in numerous tissues of fi sh 
(Reinecke, 2005; Poppinga et al., 2007; Peterson and 
Waldbieser, 2009). In this study, the transcript levels of 
 GHR  signifi cantly decreased in the liver and muscle of 
fi sh in the HSD group, indicating that chronic stress 
down-regulated  GHR  expression. Growth hormone 
and cortisol have been reported to be involved in 
regulating  GHR  expression in various fi sh species (Jiao 
et al., 2006; Very and Sheridan, 2007). At present, it is 
unclear whether crowding stress regulates  GHR  by 
increasing cortisol concentrations or by aff ecting GH 
secretion. Further studies are necessary to investigate 
the specifi c mechanism by which chronic stress alters 
 GHR  transcription. In addition, considering the 
relationship among  GHR ,  GH , and  IGF s, reduced 
expression of hepatic  GHR  in Amur sturgeon would 
attenuate GH sensitivity, possibly leading to reduced 
IGF production. The reduced transcript levels of  IGF - 1  
and  IGF - 2  in the HSD group in this study are consistent 
with this hypothesis.  

 In fi sh, IGFs are the primary mediators of the 
growth-promoting eff ects of GH. The IGFs regulate 
many biological processes such as cell proliferation 
and diff erentiation, protein synthesis, and tissue 
maintenance (Patel et al., 2005; Allard and Duan, 
2011). After the reduction in the transcript levels of 
 GH , we observed a signifi cant decrease in the 
transcript levels of  IGF - 1  in the liver and muscle of 
fi sh at higher stocking densities after 70 days of 
culture, consistent with the changes in serum IGF-1 
concentrations. A positive correlation between 
somatic growth and plasma IGF-1 has been reported 
in vertebrates (Patel et al., 2005), and circulating IGF-
1 is regarded as a biomarker of growth performance 
in fi sh (Picha et al., 2014). In this study, the reduction 
in growth performance in the HSD group was 
accompanied by changes in IGF-1 serum levels. In 
addition, the transcript levels of  IGF - 2  in the liver 
were lower in fi sh in the HSD group. This fi nding is 
consistent with those previously reported for 
 S .  senegalensis  cultured at diff erent stocking densities 
(Salas-Leiton et al., 2010). However, the levels of 
circulating IGF-2 and  IGF - 2  mRNA in muscle did not 
diff er signifi cantly among the three experimental 
groups. We observed that  IGF - 1  and  IGF - 2  were 
diff erentially regulated by crowding stress, indicating 
that IGF-1 and IGF-2 play diff erent roles in the muscle 
in response to crowding stress. The suppression of 
IGF synthesis and gene expression by cortisol has 

been observed in fi sh and other vertebrates (Delany et 
al., 2001; Peterson and Small, 2005; Leung et al., 
2008). A cortisol treatment was shown to decrease 
 IGF - 1  gene expression in hepatocytes isolated from 
sea bream (Leung et al., 2008), and to reduce plasma 
IGF-1 and  IGF - 1  mRNA levels in the liver in 
 Oreochromis   mossambicus  (Kajimura et al., 2003). In 
this study, the signifi cant reduction in  IGF - 1  and  IGF -
 2  transcript levels in Amur sturgeon in the HSD group 
may be related to increased serum cortisol levels.   

 5 CONCLUSION 

 To better understand the functions of GH and IGF-
2 in growth and other physiological processes, we 
analyzed the cDNA sequences and expression patterns 
of  GH  and  IGF - 2  in diff erent tissues of Amur sturgeon 
cultured at diff erent stocking densities. The results 
showed that increasing stocking density negatively 
aff ected the growth performance of Amur sturgeon. 
High stocking density during a 70-day experiment 
caused chronic crowding stress, and aff ected the 
growth and metabolism of Amur sturgeon, as indicated 
by changes in serum lipid and protein contents. The 
expression of many genes in the GH/IGF axis and 
circulating levels of GH and IGF-1 were down-
regulated in fi sh cultured at a high stocking density, 
suggesting that crowding stress infl uenced growth 
performance via regulation of the GH/IGF axis. 
Further studies are required to explore the specifi c 
mechanisms and signaling pathways involved in these 
changes. 
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