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A B S T R A C T   

Spotted sea bass (Lateolabrax maculatus), widely distributed along the Chinese coasts, is an economically 
important aquaculture fish species. Recently, degeneration of genetic characteristics such as the decline in the 
growth rate severely hampers the development of its industry, and genetic improvement for this species is ur
gently required. In this study, the first genome-wide association study (GWAS) for growth traits (body weight, 
body height, total length and body length) were conducted and the potential performance of genomic selection 
(GS) were evaluated by genomic prediction of breeding values. Based on >4 million single-nucleotide poly
morphisms (SNPs) genotyped by whole-genome resequencing for 514 individuals from Dongying (DY, 301 in
dividuals) and Tangshan populations (TS, 213 individuals), GWAS detected a total of 66 growth-related SNPs 
located in multiple chromosomes but no major QTL, suggesting that growth traits were controlled by a polygenic 
genetic architecture. Candidate growth associated genes were identified to be involved in cytoskeleton reorga
nization, neuromodulation, angiogenesis and cell adhesion, and vascular endothelial growth factor (VEGF) and 
estrogen signaling pathways were considered to play important roles for growth. Predictive accuracies of the 
genomic estimated breeding value (GEBV) were compared among rrBLUP, BayesB, BayesC and BL models, and 
rrBLUP was determined as the optimal model for growth traits. Furthermore, the predictive performance based 
on different selection strategies of SNPs were compared, indicating using GWAS-informative SNPs was more 
efficient than random selected markers. These results highlighted the potential of GWAS to improve predictive 
accuracies of GS and reduce genotyping cost substantially. Our study laid the basis for further elucidate genetic 
mechanisms and demonstrated the application potential of GS approach for growth traits in spotted sea bass, 
which will facilitate future breeding of fast growth strains.   

1. Introduction 

Aquaculture is the fastest growing food sector in the world, providing 
a source of high-quality protein for human consumption (Ke et al., 2022; 
Tang et al., 2018). According to the Food and Agriculture Organization 
of the United Nations, global fish production had reached about 179 
million tons in 2018, of which aquaculture accounted for 46% of the 
total production (FAO, 2020). Growth is one of the most important 
economic traits in aquaculture industry as it exerts direct influence on 
production (Li et al., 2018; Zhou et al., 2019). Therefore, many studies 
have focused on the genetic basis of growth-related traits and identified 
several genes and regulatory factors that could be applied to genetic 
improvement of growth in fish species. For examples, genes on 

somatotropic axis, such as growth hormone (GH), insulin-like growth 
factor (IGF), and their associated carrier proteins and receptors, have 
been demonstrated to play vital roles in the regulation of metabolic and 
physiological processes of fish growth (Caldarone et al., 2016; Chand
hini et al., 2021; De-Santis and Jerry, 2007; Eivers et al., 2005; Hu et al., 
2013). In addition, myogenic regulatory factors (MRFs), myostatin 
(MSTN), myomaker (MYMK) and myomixer (MYMX) were proved as 
essential myogenic genes for muscle development and growth (De- 
Santis and Jerry, 2007; Landemaine et al., 2019; Perello-Amoros et al., 
2021; Sánchez-Ramos et al., 2012; Sun et al., 2012), as well as bone 
morphogenetic proteins (bmps) have been demonstrated as important 
regulators for skeletal development and bone formation in several 
aquaculture fish species (Geng et al., 2017; Wu et al., 2016). Despite 
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this, as the growth traits are known to be quantitative traits that 
controlled by multiple genes, it is difficult to elucidate the underlying 
genetic mechanisms of growth through studies at few gene or pathway 
level. Therefore, studies concentrated on precise localization of casual 
loci and identification for more candidate genes are needed to further 
revealing the genetic mechanism of fish growth. 

Based on the rapid development of high-throughput sequencing 
technologies, several efficient tools have been discovered to understand 
the polygenic genetic architecture of growth traits (Li et al., 2018; Tsai 
et al., 2015b; Ye et al., 2014; Zhou et al., 2019). Among which, quan
titative trait loci (QTL) mapping and genome-wide association studies 
(GWAS) became powerful methods for exploration of growth-related 
loci and genes. QTL mapping through linkage relationship relied on 
the family samples, which limits the number of recombinational events 
and leads to the identified QTLs localized in large chromosomal regions 
(Gutierrez et al., 2015; Korte and Farlow, 2013; Tsai et al., 2015a; Xu 
et al., 2019; Zhu et al., 2019). In contrast, GWAS utilizes tens of thou
sands SNP markers and natural populations that mimic a large number 
of historical recombination, which provides a relatively higher resolu
tion and accuracy for identifying candidate genes (Scherer and Chris
tensen, 2016; Tsai et al., 2015b; Xu et al., 2019; Yu et al., 2016). To date, 
GWAS for growth traits has successfully conducted for several aqua
culture fish species such as the Atlantic salmon (Salmo salar) (Gutierrez 
et al., 2015; Tsai et al., 2015b), common carp (Cyprinus carpio) (Pal
aiokostas et al., 2018), hybrid catfish (Ictalurus spp.) (Geng et al., 2017; 
Li et al., 2018), rainbow trout (Oncorhynchus mykiss) (Gonzalez-Pena 
et al., 2016) and large yellow croaker (Larimichthys crocea) (Dong et al., 
2016b; Zhou et al., 2019). Many novel candidate genes and genomic 
regions spread over the entire genome have been identified through 
these studies, facilitating the elucidation of molecular mechanisms 
regulating growth in fish. 

Based on genetic markers covering the whole genome, genomic se
lection (GS) is a precise way to evaluate breeding potential of candidate 
populations and greatly facilitate genetic breeding progress for target 
traits (Barría et al., 2021; Liu et al., 2019). GS considers all SNPs with 
micro-effect sizes contributing the phenotypic variation and better 
predict the genomic estimated breeding values (GEBV) of genotyped 
candidate individuals, which tends to be more practical in the selective 
breeding of traits with a polygenic genetic architecture or low herita
bility (Meuwissen et al., 2001; Zhao et al., 2021). Compared with 
traditional breeding approach, GS possesses many advantages such as 
higher predictive accuracy, increased genetic gains, reduced breeding 
cycle and no requirement for complex pedigree recording (Shan et al., 
2021; Zhao et al., 2021). Therefore, GS has been widely applied to 
economic species (Cuyabano et al., 2019; Crossa et al., 2017; Georges 
et al., 2019) and has made great progress in the selective breeding. With 
the significant reduction of sequencing cost, GS studies focusing on 
growth traits have been conducted in several aquaculture fish species 
such as Atlantic salmon (Tsai et al., 2015b), large yellow croaker (Dong 
et al., 2016a; Dong et al., 2016b), rock bream (Oplegnathus fasciatus) 
(Gong et al., 2021), yellow drum (Nibea albiflora) (Liu et al., 2019), 
common carp (Palaiokostas et al., 2018), and rainbow trout (García- 
Ballesteros et al., 2022). Genomic predictive accuracy is a key indicator 
determining the success of GS program and it depends on several factors 
including selection models, SNP sets of varying densities, selection 
strategies of SNPs, as well as population structure and genetic related
ness. These suggested that when applying GS in genetic breeding pro
gram, it’s required to consider various influencing factors and compare 
predictive accuracies of different GS models and selection strategies, 
ultimately choose the most suitable GS approach for target trait (Dong 
et al., 2016a; Khatkar, 2017; Liu et al., 2019). 

Spotted sea bass (Lateolabrax maculatus), as a euryhaline and eury
thermic fish species, is widely distributed along the Chinese coasts 
(Wang et al., 2016). Due to its high nutritional value and pleasant taste 
(Liu et al., 2020; Sun et al., 2021), spotted sea bass became an 
economically important aquaculture fish species in China, with the 

annual production exceeding 190,000 tons in recent years (China Fish
ery Statistical Yearbook, 2021(Li et al., 2021). However, due to the lack 
of scientific genetic breeding, industry of spotted sea bass is threatened 
by degeneration of genetic characteristics such as decline in the growth 
rate and decreased disease-resistant ability. Additionally, its long-term 
generation interval (3–4 years) made the development of efficient mo
lecular breeding program urgently required (Liu et al., 2020; Wang 
et al., 2017). Therefore, in order to accelerate the progress in genetic 
improvement of growth performance, in this study, a total of 514 in
dividuals derived from two populations of spotted sea bass were geno
typed using whole-genome resequencing methods, and their phenotypes 
of growth traits including body weight (BW), body height (BH), total 
length (TL) and body length (BL), were recorded. Our study aims to (1) 
identify SNPs and candidate genes associated with growth traits for 
spotted sea bass by GWAS method, (2) compare the accuracies of 
genomic prediction (GP) among different GS models and SNP selection 
strategies for growth traits, thereafter to evaluate the potential of GS for 
genetic improvement. Our study provides valuable resource for further 
elucidating the genetic mechanisms and preliminarily explores the 
optimal GS approach for growth traits in spotted sea bass, which will 
facilitate future selection breeding of its fast growth strains. 

2. Materials and methods 

2.1. Ethics statement 

This study was conducted in accordance with approved guidelines of 
the respective Animal Research and Ethics Committees of Ocean Uni
versity of China (Permit Number: 20141201). The present study did not 
include endangered or protected species. 

2.2. Fish sample and phenotype measurement 

Samples of spotted sea bass were collected from two local fish farms 
located in Dongying (DY) and Tangshan (TS), China, respectively. In 
details, a total of 301 one-year-old fish from DY population, which were 
natural population collected from the Yellow Sea and the Bohai Sea, as 
well as 213 five-year-old fish from TS population that were reared as 
brook stock and originally derived from multiple sources, were 
randomly selected as experimental materials respectively. Four growth 
traits including body weight (BW), body height (BH), total length (TL) 
and body length (BL) were measured, of which, BW was measured using 
electronic scale with a precision of 0.01 g; BH, TL, and BL were 
measured using tpsDig v2.0 software with precision of 0.01 cm. Pear
son’s correlation was employed to reflect the relationships among these 
four growth traits. The pectoral fins of fish individuals were sampled and 
stored in anhydrous ethanol for DNA extractions. 

2.3. Sequencing, genotyping, and quality control 

Genomic DNA of each sample was extracted with TIANamp Genomic 
DNA Kit (TIANGEN, Beijing, China). The concentration and quality of 
genomic DNA were determined by a Biodropsis BD-1000 nucleic acid 
analyzer (OSTC, Beijing) and electrophoresis in 1% agarose gel. Subse
quently, high-quality DNA was sequenced with whole-genome rese
quencing technique implemented via BGISEQ-500 platform to generate 
paired-end 150 bp reads (BGI Genomics Co., Ltd., CHINA) following the 
protocols described previously (Fang et al., 2018). Thereafter, the raw 
reads were obtained and filtered using SOAPnuke v2.0 (Chen et al., 
2018) to remove reads that contained the adapters, reads that possessed 
N bases (ambiguous bases) >10% of the total read length and reads with 
low Phred score (Q ≤ 12) bases >50% of the total read length. After 
filtering, the clean reads were aligned to the reference genome of 
L. maculatus (PRJNA407434) using BWA v0.7.17 with default settings 
(Li and Durbin, 2009). Variant calling was conducted with GATK v4.1.8 
software (McKenna et al., 2010) with the following filtering conditions: 
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quality by depth/variant confidence ≥2.0, fisher strand ≤60.0, RMS 
mapping quality ≥40.0, MQRankSum ≥ − 12.5, ReadPosRankSum ≥
− 8.0 and StrandOddsRatio (SOR) >3.0. Then we executed variant joint 
with GATK software for the following three genotype data sets (1) 301 
individuals from DY population, (2) 213 individuals from TS population 
and (3) all 514 individuals, namely as ALL population. SNP data were 
further filtered using Plink v1.9 (Purcell et al., 2007) with the following 
parameters: (1) SNP sites with minor allele frequency (MAF) below 5% 
were removed; (2) individuals with variant missing rate >2% (mind 
>0.02) and SNP sites with genotyping call rate below 5% (geno <0.05) 
were discarded; and (3) SNP sites with P value of the Hardy Weinberg 
equilibrium chi-square test <0.05 (hwe < 0.05) were removed. Missing 
genotypes were imputed using software Beagle v5.2 (Browning and 
Browning, 2016). The SnpEff v5.0 program (Cingolani et al., 2012) was 
used to annotate SNPs based on the information of the reference genome 
of spotted sea bass. Finally, within each population, totally 4,660,345 
SNPs were identified for DY population, and 4,288,765 SNPs were 
characterized for TS population, respectively. Additionally, 3,754,961 
SNPs were shared among all 514 individuals from ALL population. 
Those SNPs were retained and were used for subsequent analyses. 

2.4. Linkage disequilibrium (LD) and population structure analysis 

The LD coefficient (r2) between two SNPs was calculated using the 
PopLDdecay v3.41 package (Zhang et al., 2019) with the parameters of 
“-MaxDist 300 kb”, and the genome-wide pattern of LD decay with 
distance was plotted by ggplot2 v3.3.6 package. Principal component 
analysis (PCA) was used to investigate the genetic structure for all in
dividuals using Plink v1.9 (Purcell et al., 2007), and the PCA plot was 
visualized based on PC1–2 using ggplot2 package. For a better under
standing of the population structure of all individuals, the Admixture 
v1.3.0 software (Alexander et al., 2009) was further employed to 
calculate population structure using the maximum likelihood model for 
DY, TS and ALL populations, respectively. The K-value (the putative 
number of genetic group) was set to 1–8, 1–10 and 1–10 respectively, 
and the K-value corresponding to the minimum cross-validation (CV) 
value was considered as the optimal population stratification number. In 
addition, genetic relatedness between individuals were evaluated by 
GCTA v1.93.2 software (Yang et al., 2011), and the corresponding 
heatmap was visualized using hist function in R. 

2.5. Genome-wide association study (GWAS) 

Based on the SNP genotype and growth traits phenotypic data, the 
Mixed Linear Model (MLM) of GEMMA v0.98.1 (Zhou and Stephens, 
2012) was used to executed univariate GWAS to detect SNPs associated 
with the four growth traits in DY and TS populations, respectively. The 
calculation model is as follow: 

y = Wα + Xβ + Zμ + ε. 
Where y is the phenotype data of growth traits; W is a covariate 

matrix of fixed effects, a is vector of corresponding coefficients including 
the first three principal components; X is the matrix for the fixed effects, 
β is the allele substitution effect of each SNP; Z is the genomic kinship 
matrix based on SNPs, μ is the additive genetic effect; and ε is the vector 
of residual errors. In addition, we carried out meta-analyses by METAL 
software (Willer et al., 2010) to integrate the results of two univariate 
GWAS analyses (DY and TS populations), and calculated the overall 
weighted P-values for each marker in ALL population. Meta-analysis is 
powerful to achieve the same effect as increasing the sample size by 
combining the results of multiple GWAS projects, and detect more 
variation sites with low frequency. The results of univariate GWAS an
alyses and Meta-analyses were visualized by the “CMplot v4.1.0” 
package (Yin et al., 2021) in R platform. LD pruning was conducted 
using Plink v1.9 (Purcell et al., 2007) with the parameter of “–indep- 
pairwise 1000kb 1 0.2” and generating independent SNPs. Based on 
Bonferroni correction with the estimated number of independent SNPs 

(N), the genome-wide significance association threshold was set as 0.05/ 
N and the suggestive association threshold was set as 1/N. Gene was 
considered as candidate gene of growth traits when significant SNP is 
located in its gene region, or the nearest genes located at the upstream 
and downstream of the significant SNP. To further elucidate the regu
lation mechanism of growth traits, Gene Ontology (GO) enrichment 
analysis of all candidate genes was evaluated in DAVID (https://david. 
ncifcrf.gov/) online website. Finally, significantly enriched GO terms 
(p < 0.05) were visualized with ggplot2 v3.3.6 package. 

2.6. Genomic prediction (GP) 

To assess the feasibility of genomic selection (GS) for improving the 
growth traits in spotted sea bass, we conducted GP to evaluate predictive 
accuracies of TL trait in DY and TS populations. Considering the mul
ticollinearity of GS model might be caused by high correlation among 
the adjacent SNPs, the tagging SNP, representing SNP in a haplotype 
region of the genome, were selected by Plink v1.9 (Purcell et al., 2007) 
and were used for subsequent GP analyses. Four models, including ridge 
regression best linear unbiased prediction (rrBLUP) (Meuwissen et al., 
2001), BayesB (Cheng et al., 2015; Meuwissen et al., 2001), BayesC (Sun 
et al., 2011) and Bayesian LASSO (BL) (Li et al., 2018) were applied in 
our GS prediction. In short, the general form of these models was: 

y = Xb + Zg + e. 
Where y is the vector of phenotypic values; b is the vector of fixed 

effect including the first three principal components; g is the vector of 
additive genetic values (SNPs effect); e is the vector of residual effect; X 
and Z are incidence matrices relating the fixed effect and additive ge
netic values. Of which, rrBLUP model was performed using R package 
“rrBLUP” (Endelman, 2011), and the other three Bayes models were 
operated using R package “BGLR v1.1.0” (Pérez, and de los Campos, G., 
2014). 

Predictive accuracies of different GS models were compared through 
randomly selecting different numbers (100, 200, 400, 800, 1600, 3200, 
6400, 12,800, 25,600, 51,200, 102,400, 204,800, 409,600 and all) of 
SNPs using ten-fold cross-validation with ten replicates (Spindel et al., 
2015). In the procedure of ten-fold cross validation, the training set 
including 90% individuals was used to build GS model and calculate 
markers effect, then the GS model was used to calculate the genomic 
breeding values (GEBVs) of the validation set comprising the remaining 
10% individuals. Finally, the predictive accuracy was calculated as the 
mean correlation coefficient between the predicted GEBVs and the 
actual phenotypic values of the validation set. Different numbers of SNP 
as stated above were randomly selected with five replicates. The pre
dictive accuracy results for each GS model were averaged over five 
replicates to reduce random effects, and the model possessing the 
highest accuracy was selected as the optimal GS model for subsequent 
analyses. 

Since the cost of high throughput sequencing is still high for aqua
culture species compared with their market values, it’s economically 
significant to obtain considerable predictive accuracy by using as few 
markers as possible. To explore the impact of reduced SNP density on 
predictive accuracy of GS models, we built 12 different SNP sets with the 
number of 10, 50, 100, 500, 1000, 5000, 10,000, 50,000, 100,000, 
200,000, 500,000 and all SNPs, and compared the predictive accuracies 
using the optimal GS model of three SNP selection strategies under the 
following: (1) selecting the SNPs with highest ranked P-value based on 
the result of GWAS implemented only in the training population 
(GWAS), (2) selecting the SNPs with highest ranked P-value based on the 
result of GWAS implemented in whole population (GWAS1) and (3) 
SNPs were randomly selected with five replicates (Random). 
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3. Results 

3.1. Statistics of the growth traits 

The basic phenotypic statistics of four growth traits including BW, 
BH, TL and BL were described in Table 1 and Fig. S1, and the detailed 
phenotypes of growth traits for two populations were provided in 
Table S1. As shown in Table 1, the mean values of BW, BH, TL and BL 
were 73.62 ± 37.99 g, 4.37 ± 0.66 cm, 21.32 ± 2.94 cm and 18.51 ±
2.69 cm for DY population, and 2.85 ± 0.68 kg, 13.56 ± 1.14 cm, 65.64 
± 4.81 cm and 58.64 ± 4.53 cm for TS population, respectively. Among 
them, the coefficient of variation of BW were higher than the other traits 
(Table 1). The distribution histograms displayed that the four growth 
traits were close to normal distribution (Fig. S1). Significant high cor
relations were identified among the four growth traits (P < 0.01), with 
the Pearson correlation coefficient ranged from 0.8516 to 0.9899 for DY 
population, and from 0.8299 to 0.9949 for TS population (Fig. S2). 

3.2. Genotyping results and marker distribution 

A total of 3,754,961 SNPs were shared for ALL population, and the 
transition to transversion ratio was 1.545 (2,279,513/1,475,448). 
Among those SNPs, 1,634,217 (29.62%) were located in the intergenic 
region, 148,534 (2.69%) were in the exon region, 1,868,195 (33.86%) 
were in the intron region, and 1,723,112 (31.23%) were in the 1 kb 
region upstream or downstream of the gene coding sequences 
(Table S2). Among the SNPs belonging to the coding regions, the ratio of 
synonymous SNPs to nonsynonymous SNPs was 2.32:1 (103,221/ 
44,532). The total physical distance covered by these SNPs was 597.61 
Mb, and these SNPs are densely and evenly distributed in the genome 
with the average density of SNP/154 bp. Among the 24 chromosomes, 
chromosome 20 harbored the highest SNP marker density of SNP/137 
bp, while chromosome 4 possessed the lowest SNP marker density of 
SNP/172 bp (Fig. 1A). 

3.3. Population structure analysis 

LD analysis results revealed that the squared correlation coefficient 
(r2) of two loci decreased rapidly as the distance between each pair of 
SNPs increased, and r2 decayed to 0.1 when the distance was around 
150 bp (Fig. 1B). The result of principal component analysis (PCA) 
indicated that the genetic group of DY individuals were relatively sim
ple, whereas TS individuals derived from multiple sources have more 
genetic groups. In addition, all DY individuals and partial TS individuals 
shared overlapped cluster, indicating that they might belong to the same 
genetic group (Fig. 1C). Moreover, population structure analysis indi
cated that the CV value reached the minimum when K = 1, 7 and 7 for 
DY, TS and ALL populations, respectively (Fig. S3), which were selected 
as the most suitable genetic group numbers for the three populations. As 
shown in Fig. 1D, the result of population structure analysis further 
confirmed that all DY individuals and part of TS individuals were 

clustered to the same genetic group. In addition, the analysis of genetic 
relatedness indicated no genetic relatedness was detected among DY 
individuals (Fig. S4A), and weak genetic relatedness existed among TS 
individuals (Fig. S4B). 

3.4. GWAS analysis results 

Due to the population stratification identified across the DY and TS 
populations, we firstly performed univariate GWAS analyses to identify 
significant SNPs associated with the four growth traits for DY and TS 
populations separately. Thereafter, meta-analyses which may exert 
great power to detect common and new candidate SNPs were applied for 
ALL population. LD pruning by Plink were performed, which were used 
to set a stringent threshold that guaranteed confidence of SNPs and 
avoided false positives, producing 2,236,541, 1,181,885 and 1,885,069 
independent SNPs for DY, TS and ALL populations, respectively. 

For BW trait, univariate GWAS analyses identified 3 genome-wide 
significant SNPs and 15 suggestive SNPs for DY population, and the 
phenotypic variance explained (PVE) by the 3 significant SNPs and 15 
suggestive SNPs ranged from 9.45% to 10.36%, and from 8.24% to 
10.36%, respectively. For TS population, 1 genome-wide significant SNP 
with the PVE of 13.53%, and 3 suggestive SNPs with the PVE from 
10.85% to 11.17% were identified. Additionally, meta-analysis identi
fied 1 novel significant SNP and 9 novel suggestive SNPs for ALL pop
ulation (Table 2). For BH trait, univariate GWAS analyses identified 9 
suggestive SNPs with the PVE from 8.18% to 9.57% for DY population, 
and 10 suggestive SNPs with the PVE from 11.16% to 12.63% were 
identified in TS population. Moreover, meta-analyses identified 2 new 
suggestive SNPs for ALL population (Table S3). The significant SNPs 
associated with TL and BL traits were basically consistent attributed to 
the extremely high correlations (0.99 for both DY and TS populations) 
between the two traits, thus we selected SNPs associated with TL trait as 
the representative of both traits. Univariate GWAS analyses of TL trait 
identified 1 significant SNP with the PVE of 11.06% and 12 suggestive 
SNPs with the PVE from 8.16% to 9.40% for DY population. For TS 
population, 2 significant SNPs with the PVE from 13.74% to 14.88% and 
7 suggestive SNPs with the PVE from 10.88% to 11.42% were detected 
(Table S4). In addition, 2 new suggestive SNPs were detected for ALL 
population using meta-analyses. 

3.5. Candidate genes identification 

For BW trait, angiopoietin like 4 (angptl4), valyl-tRNA synthetase 1 
(vars) and receptor activity modifying protein 1 (ramp1) exceeding the 
significant threshold, and perforin 1 (prf1), integrator complex subunit 8 
(ints8), vascular endothelial growth factor receptor 3 (vegfr3), solute 
carrier family 39 member 10 (slc39a10), vav guanine nucleotide ex
change factor 2 (vav2), NCK associated protein 1 (nckap1) and 8 other 
genes passed the suggestive threshold, were recognized as putative 
candidate genes associated for DY population (Fig. 2A). Neuritin 1 
(nrn1), phospholipase C beta 3 (plcb3), solute carrier family 8 member 
A3 (slc8a3) and other 3 genes as putative candidate genes were identi
fied for TS population (Fig. 2B). In addition, meta-analysis identified 
ribosomal protein L38 (rpl38), sidekick cell adhesion molecule 2 (sdk2), 
immunoglobin superfamily member 21 (igsf21), phosphatase and tensin 
homolog (pten) and other 11 novel genes, as BW associated candidate 
genes (Fig. 2C). For BH trait, nuclear receptor coactivator 3 (ncoa3), 
laminin subunit alpha 4 (lama4) and other 8 genes were detected as 
putative candidate genes for DY population (Fig. S5A), and neuritin 1 
(nrn1), cadherin 18 (cdh18), AVL9 cell migration associated (AVL9), C2 
calcium dependent domain containing 4A (c2cd4a) and other 8 genes 
were deduced as candidate genes for TS population (Fig. S5B). More
over, Golgi associated, gamma adaptin ear containing, ARF binding 
protein 3 (gga3), melanin-concentrating hormone receptor 1 (mchr1), 
cyclin dependent kinase 13 (cdk13) and RALY RNA binding protein like 
gene (ralyl) were identified as putative BH associated genes using meta- 

Table 1 
Statistics of phenotypic data for four growth traits in DY and TS populations.  

Populations Traits Mean (SD) Min Max CV (%) 

DY 
(N = 301) 

BW (g) 73.62 (37.99) 25.64 278.20 51.60% 
BH (cm) 4.37 (0.66) 2.79 6.65 15.10% 
TL (cm) 21.32 (2.94) 15.99 32.05 13.79% 
BL (cm) 18.51 (2.69) 12.54 28.63 14.54% 

TS 
(N = 213) 

BW (kg) 2.85 (0.68) 1.350 5.35 23.86% 
BH (cm) 13.56 (1.14) 10.15 17.16 8.41% 
TL (cm) 65.64 (4.81) 48.01 81.87 7.33% 
BL (cm) 58.64 (4.53) 42.98 72.36 7.73% 

BW: Body weight; BH: Body height; TL: Total length; BL: Body length. 
SD: standard deviation; Min: minimum; Max: maximum; CV: coefficient of 
variation. 
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analyses (Fig. S5C). For TL trait, microtubule-actin cross-linking factor 1 
(macf1) exceeding the significant threshold, and growth differentiation 
factor 15 (gdf15), mitochondrial ribosomal protein L10 (mrpl10) and 
other 9 candidate genes passed the suggestive threshold, were consid
ered as putative candidate genes for DY population (Fig. S6A). Neuritin 
1 (nrn1), ring finger protein 152 (rnf152), RAS responsive element 
binding protein 1 (rreb1) and other 8 genes were identified as putative 
candidate genes for TS population (Fig. S6B). In addition, meta-analyses 
detected two novel genes, solute carrier organic anion transporter family 
member 5A1 (slco5a1) and N-acetyltransferase 8 (nat8) were TL trait 
associated (Fig. S6C). 

Enrichment analysis of GO indicated that these candidate genes serve 
essential functions in multiple growth-related procedures, such as 
angiogenesis, multicellular organism development, central nervous 
system development, ossification, homophilic cell adhesion, positive 
regulation of actin filament polymerization, and cell migration (Fig. 3A). 
In addition, two signaling pathways including vascular endothelial 
growth factor (VEGF) signaling pathway (Fig. 3B) and estrogen 
signaling pathway (Fig. 3C) were detected in our study and considered 
to potentially play critical roles in mammal growth (Coultas et al., 2005; 
Ferrara et al., 2003; Roman-Blas et al., 2009). The detailed potential 
functional mechanism of candidate genes and signaling pathways is 
described in “Discussion.” 

3.6. Genomic prediction (GP) for TL trait 

After selected by Plink, 507,714 and 518,798 tagging SNPs were 
retained for DY and TS populations, separately. Using a tenfold cross- 
validation analysis, we firstly evaluated the predictive performance of 
four GS models (rrBLUP, BayesB, BayesC and BL) through randomly 

selecting different numbers of SNPs. Results showed that with marker 
density increasing, the predictive accuracies of three Bayes models al
ways maintained a low level for DY population, and improved obviously 
for TS population. Meanwhile the predictive accuracy of rrBLUP model 
was generally higher than Bayes models at different marker densities for 
two populations (Table S5). For example, when the number of SNPs 
were 12,800 and 409,600, rrBLUP model had significantly higher pre
dictive performance than Bayes models for both populations (19%–92% 
higher than other three models) (Fig. 4, Table S5). Therefore, rrBLUP 
model was considered as the optimal model for both populations and it 
was used to compare the predictive performance of different selection 
strategies. 

The predictive accuracies of TL trait were compared among different 
SNP selection strategies using rrBLUP model (Fig. 5). For both DY and TS 
populations, the general predictive performance by using the same SNP 
numbers for different selection strategies was: GWAS1 > GWAS >
Random. The predictive accuracies had reached >0.9 for both pop
ulations in strategy of GWAS1 when the number of SNPs was only 500, 
which were significantly higher than other selection strategies. We 
consider this result is highly biased and effect is overestimated, which 
was explained and discussed in details in “Discussion”. In strategies of 
GWAS, the predictive accuracies increased gradually with the increasing 
of SNP markers, which reached the predictive plateau (0.37 and 0.42 for 
DY and TS population), and remained constant or decreased slightly 
when marker density continued to increase until employing all SNPs 
(Fig. 5). The general pattern of predictability of Random strategy was 
similar with GWAS, but the overall predictive accuracy was significantly 
lower than using GWAS strategy. In addition, we also found that the 
predictive accuracies of GWAS strategy could reach the prediction 
plateau at a lower marker density compared to the Random strategy. For 

Fig. 1. (A) SNPs distribution pattern in different chromosomes of spotted sea bass. Different colors represent the corresponding number of SNPs within 0.1 Mb 
distance according to the legend. (B) LD decay plot of SNPs for DY, TS and ALL populations. (C) PCA plot of all individuals based on PC1 and PC2. (D) The population 
structure of ALL population when K = 7. The numbers represent the corresponding populations. 
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DY population, 50 K GWAS-informative SNPs could achieve the pre
diction plateau, while almost all SNPs were required to obtain the 
highest predictive accuracy using Random strategy (Fig. 5A). For TS 
population, only 1 K GWAS-informative SNPs were needed to achieve 
the prediction plateau, however, 10 K SNPs were required for Random 
strategy (Fig. 5B). 

4. Discussion 

In this study, for growth traits of spotted sea bass, we identified 66 
growth-related SNPs using the MLM model, of which, only two SNPs 
were located in the exon region and caused synonymous mutations, 
while most significant SNPs were located in intron and intergenic re
gions. These results suggested that most genetic variations may affect 
growth traits by regulating gene expression rather than altering gene 
products directly. In addition, the significant SNPs associated with 
growth traits were widely distributed in multiple chromosomes, and the 
phenotypic variance explained by these SNPs varied from 8.16% to 
14.88%, which were slightly higher than previous studies in other fishes, 
such as catfish (2.67–6.72%) (Li et al., 2018), Atlantic salmon (up to 
12%) (Tsai et al., 2015b), and rainbow trout (0.1–0.18%) (Gonzalez- 
Pena et al., 2016). These results confirmed that growth traits of fish 
species are complex polygenic genetic architecture and they are regu
lated by many micro-effect genes rather than several major QTLs (Li 
et al., 2018; Liu et al., 2019; Tsai et al., 2015b). However, significant 
SNPs detected in two populations were quite different, and they were 
also inconsistent with SNPs detected by QTL mapping for growth traits 
of spotted sea bass by using 2b-RAD method (Liu et al., 2020). In 
addition to methodological differences between GWAS and QTL map
ping, population structure, genetic relatedness, genotyping strategy, 
marker density and some other factors may affect the final outcome 
(Rosenberg et al., 2010; Salisbury et al., 2003; Wu et al., 2019). 

Compared with our previous study of QTL mapping using 6883 SNPs 
generated from 333 F1 individuals in a full-sib family (Liu et al., 2020), 
in the current study, much higher density of SNP markers (>4 million) 
and complex population structure could detect more genetic variants 
associated with growth traits. Furthermore, genetic relatedness and 
population structure added to the model as a covariate could improve 
the accuracy and universality of the GWAS results (San et al., 2021). Our 
study indicated that population structure might be mainly responsible 
for the final outcome of GWAS, thus a wider range of population sources 
are needed to verify and further explore the polygenic regulation 
mechanisms underlying the growth traits of spotted sea bass. 

In DY population, the most significant SNP associated with TL/BL 
traits were located in intron regions of macf1 gene. Macf1 is an impor
tant cytoskeletal protein which could cross-link microfilaments and 
microtubules through the N-terminal actin-binding domain and C-ter
minal microtubule-binding domain (Hu et al., 2016), playing vital roles 
in several cellular processes including cell migration, cell proliferation 
and cell differentiation (Hu et al., 2015; Ka and Kim, 2016; Ka et al., 
2014). In addition, the GO enrichment analysis also detected some 
cytoskeleton reorganization related categories such as microtubule 
(slc8a3, macf1, dlg1, kif2a, eml1), positive regulation of actin filament 
polymerization (nckap1, dlg1, cracd) and cytoskeletal protein binding 
(macf1, dlg1, nebl), indicating that cytoskeleton reorganization may play 
important roles in growth regulation of spotted sea bass. Neuro
modulation has be identified as a major factor affecting fish growth (Liu 
et al., 2020; Su et al., 2018), and body weight is determined by a balance 
between food intake and energy expenditure, which is regulated by 
multiple neural circuits (Rui, 2013). In our study, many 
neuromodulation-related procedures including learning or memory 
(slc8a3, ptprz1, pten, ephb2), central nervous system development 
(nckap1, ptprz1, pten, msi2), synapse (slc8a3, nrn1, ptprz1, pten, kcnn1, 
rpl38, sdk2), neuron projection (dlg1, pten, kcnn1, ephb2, mchr1) and 

Table 2 
Summary of identified SNPs and candidate genes associated with BW trait.  

Population SNP ID Allele Location MAF P-value PVE Candidate gene 

DY 2–8,902,605 T/C downstream 0.073 9.55E-09 0.1036 angptl4 
3–6,566,767 A/G Extron 0.066 3.81E-07 0.0824 prf1 
5–9,225,217 A/G Intergenic 0.125 1.23E-08 0.1027 vars 
11–18,404,621 T/C Intronic 0.075 2.00E-07 0.0861 ints8 
12–17,266,377 G/A Intronic 0.110 6.74E-08 0.0929 vegfr3 
13–4,929,312 T/A Intergenic 0.058 1.70E-07 0.1011 slc39a10 
13–5,640,281 C/T Intronic 0.071 1.55E-08 0.0945 ramp1 
13–21,236,985 A/G Intergenic 0.050 4.56E-08 0.0871 ahr 
15–22,695,502 C/G Intergenic 0.055 1.36E-07 0.0884 sgcd/mrpl22 
16–16,852,732 G/C Intronic 0.053 1.36E-07 0.0881 vav2 
19–11,149,861 A/G Intronic 0.060 2.35E-07 0.0952 atrnl1 
19–15,466,132 A/G Intronic 0.070 4.11E-08 0.0909 rpl38 
19–15,466,142 T/A Intronic 0.066 1.58E-07 
19–15,466,147 T/A Intronic 0.076 8.39E-08 
22–9,077,242 G/A Intergenic 0.063 4.46E-07 0.0920 dph6/cdin1 
22–9,077,745 G/A Intergenic 0.063 7.33E-08 
22–17,934,651 A/C Intronic 0.071 4.01E-07 0.1036 lrfn5 
24–4,022,157 C/T Intronic 0.070 4.19E-07 0.1036 nckap1 

TS 4–19,888,299 T/C Intronic 0.293 2.92E-08 0.1353 nrn1 
18–12,316,059 T/C Intergenic 0.054 5.90E-07 0.1108 plcb3/slc8a3 
23–7,281,563 A/C Intergenic 0.176 7.92E-07 0.1085 chst14/cracd 
23–14,632,325 G/A Intronic 0.099 4.88E-07 0.1117 npr2 

Meta 7–9,281,619 C/T Intergenic 0.234 2.29E-07  igsf21/arhgef10l 
7–9,281,623 C/A Intergenic 0.234 2.29E-07  
7–17,918,414 A/G Extron 0.220 3.37E-07  spen 
12–16,441,342 A/G Intergenic 0.054 3.78E-07  NA 
13–5,640,281 C/T Intronic 0.080 3.47E-07  ramp1 
19–15,794,281 T/C Intergenic 0.095 7.62E-09  rpl38/sdk2 
22–12,321,843 C/G Intronic 0.053 4.84E-07  eml1 
22–12,739,568 A/G Intronic 0.075 1.69E-07  ephb2 
22–22,043,912 A/G Intronic 0.054 2.03E-07  pten 
23–18,037,472 G/C Intergenic 0.057 3.15E-08  uhrf1/kcnn1 
24–3,467,373 T/C Intergenic 0.210 6.60E-08  cdh11/mcm8 

Allele: minor/major allele; MAF: minor allele frequency; PVE: phenotypic variance explained. 
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neuromuscular junction (slc8a3, dlg1, lama4) were enriched. In addition, 
the lowest P-values SNP were associated with BW/TL/BL/ traits for TS 
population and located in nrn1 gene. Nrn1 is a neurotrophic factor 
closely related to the plasticity of the nervous system, which can pro
mote neurite outgrowth and synaptic maturation, regulate the formation 
of synaptic circuits, and prevent the degeneration or apoptosis of nerve 
cells. These functions have positive significance for the regeneration and 
repair of nerve injury (Di Giovanni et al., 2005; Putz et al., 2005). 
Moreover, cell adhesion plays important roles in cell-cell communica
tion and the development and maintenance of tissues (Khalili and 
Ahmad, 2015), and some related functional categories including adhe
rens junction (igsf2, dlg1, cdh11, cdh18), cadherin binding (macf1, plcb3, 
dlg1, cdh11, cdh18) and homophilic cell adhesion via plasma membrane 
adhesion molecules (igsf21, cdh11, sdk2, cdh18) were detected in our 
study. Among them, cadherins (cdhs) are a superfamily of calcium- 
dependent transcellular membrane proteins playing an important role 

in mediating cell–cell adhesion (Bruner and Derksen, 2018; Mège and 
Ishiyama, 2017). Moreover, col4a3, col4a4 and pcdh10 genes related to 
cell adhesion has been also detected in previous QTL mapping for 
growth traits of spotted sea bass (Liu et al., 2020), indicating its sig
nificant role in teleost growth. However, the detailed mechanisms of cell 
adhesion regulating teleost growth are still undefined and need further 
investigations. 

Notably, angiogenesis related genes (vegfr3, pten, rora, angptl4, 
ephb2, ramp1, vav2) and pathway were significantly enriched and 
studies have demonstrated that muscle regeneration is closely related to 
the formation of new blood vessels in mammals (Latroche et al., 2015a; 
Latroche et al., 2015b). In addition, VEGF signaling pathway which was 
known to play the essential role in regulating angiogenesis (Grünewald 
et al., 2010; Karaman et al., 2018) was also detected in our study and its 
potential regulation mechanism for growth was described in Fig. 3B. In 
detail, VEGF could activate downstream signaling pathways including 

Fig. 2. Manhattan plots (left) and Quantile-Quantile (Q-Q) plots (right) of BW trait in GWAS analysis for (A) DY, (B) TS and (C) ALL populations. In Manhattan plots, 
the solid lines indicate the threshold P value for genome-wide significance association and the dashed lines indicate the threshold P value for suggestive association. 
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phosphatidylinositol 4,5-bisphosphate (PIP2) signaling pathway and rac 
family small GTPase (RAC) signaling pathway by binding to VEGF re
ceptor (VEGFR), thereby triggering multiple biological processes like 
cytoskeleton reorganization, cell survival, cell proliferation and cell 
permeability, which ultimately promote angiogenesis (Grünewald et al., 
2010; Koch and Claesson-Welsh, 2012; Meadows et al., 2001). 
Furthermore, angiopoietin like 4 (ANGPTL4) detected in our GWAS 
results could also affect angiogenesis via integrin-mediated RAC1 
signaling pathway (Fernández-Hernando and Suárez, 2020; Huang 
et al., 2011). Upon angiogenesis, activated vascular endothelial cell 
could secrete lactate that instructs M1-like macrophages polarization 
toward a pro-regenerative M2-like macrophages, promoting muscle 
regeneration by stimulating the proliferation and differentiation of 
myogenic progenitor cells (MPCs) (Almada and Wagers, 2016; Zhang 
et al., 2020). Moreover, M2-like macrophages could also upregulate the 
expression of VEGF, thereby creating a positive feedback loop that 
further promotes angiogenesis (Zhang et al., 2020). These results indi
cate that angiogenesis may play an important role in muscle prolifera
tion and differentiation of spotted sea bass, thereafter influence its 
growth performance, however, studies of angiogenesis for teleost 
growth are still limited and it’s detailed functional mechanisms need to 
be further verified. 

Moreover, estrogen signaling pathway, known to regulate fish 
growth mainly by affect the expression of growth hormone (GH) and 
insulin-like growth factor (IGF) (Chandhini et al., 2021; Holloway and 

Leatherland, 1997; Trudeau et al., 1992), was identified in our study and 
its potential regulation mechanism for growth was described in Fig. 3C. 
Estrogen primarily exerts growth-promoting effects by activating es
trogen receptor (ER) and G protein-coupled estrogen receptor (GPER) on 
target tissues, mainly via two activation modes: (1) estrogen could bind 
to ER localized at nucleus to form ER dimers, (2) estrogen could bind to 
ER or GPER localized at or near cell membrane to activate the 
phosphatidylinositol-3/Akt (PI3K/Akt) and/or protein kinase C/ 
mitogen activated protein kinase (PKC/MAPK) signal transduction 
pathways, thereby activate ER localized at nucleus by kinase-mediated 
phosphorylation and form ER dimers (Revankar et al., 2005; Roman- 
Blas et al., 2009). Activated ER dimers act as transcription factors which 
could specifically bind to estrogen response elements (EREs) in the 
promoters of target genes (GH, IGF) to regulate their expression, and the 
transcriptional activator functions could be enhanced by nuclear re
ceptor coactivator 3 (NCOA3) that was also detected by our GWAS 
analysis (Klinge, 2001; Li et al., 2022; Roman-Blas et al., 2009; Xu et al., 
2009). In addition, GPER could activate phospholipase c beta 2 (PLCB2) 
and then trigger PIP2 signaling pathway, thereby affecting cell prolif
eration, differentiation and other cell responses (Mooibroek and Wang, 
1988; Prossnitz and Barton, 2014; Qiu et al., 2006). These complex 
biological responses may together contribute to the function of estrogen 
signaling pathway to regulate growth performance in spotted sea bass. 

In this study, four GS models were performed and their predictive 
accuracies of GEBV were compared using ten replicates of ten-fold cross- 

Fig. 3. (A) Gene ontology (GO) enrichment analysis of candidate genes associated with growth traits. (B) Schematic diagram of putative growth regulation 
mechanism by vascular endothelial growth factor (VEGF) signaling pathway. (C) Schematic diagram of putative growth regulation mechanism by estrogen signaling 
pathway. These growth traits associated candidate genes identified in this study were shown in red font. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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validation. The predictive accuracies of rrBLUP model were significantly 
better than the other three Bayes models for TL trait of two populations, 
indicating rrBLUP model was more suitable for growth traits of spotted 

sea bass. Generally, the Bayes models have better performance for traits 
regulated by major quantitative trait loci due to the prior hypothesis of 
SNP effects (Gianola, 2013; Wang et al., 2014), while rrBLUP models are 

Fig. 4. Comparison of predictive accuracies using different models for TL trait in (A) DY and (B) TS populations. N is the number of randomly selected SNPs with five 
replicates, and t-test was used for significance analysis. 

Fig. 5. Comparison of predictive accuracies using different selection strategies for TL trait in (A) DY and (B) TS populations. The rrBLUP model was used for 
the analysis. 

C. Zhang et al.                                                                                                                                                                                                                                   



Aquaculture 566 (2023) 739194

10

more suitable for polygenic regulated traits because it assumes that 
every SNP following the same normal distribution has an effect 
(Endelman, 2011). In addition, the predictive accuracies of rrBLUP 
model for TS population seemed to be higher than DY population, which 
might due to the low genetic relationship of DY individuals and the 
discrepancy of population structure and size between two populations. 
The result indicated that population structure, sample size and genetic 
relatedness are important factors affecting the predictive accuracies of 
GS, which has been reported in many studies (Liu et al., 2019; Morgante 
et al., 2018; Yu et al., 2023). Hence, when applying genomic selection 
for genetic breeding, the above factors should be considered carefully in 
advance and then choose the most suitable model for a specific trait (Liu 
et al., 2019; Wang et al., 2018). 

In aquaculture industry, cost-efficiency is important for imple
mentation of GS as the relative low unit price of aquatic product 
compared to livestock (Liu et al., 2019; Shan et al., 2021; You et al., 
2020). The use of lower marker density to achieve relatively high pre
dictive accuracy, which could reduce the genotyping and computation 
cost dramatically, is a viable cost-efficiency strategy (Gong et al., 2021; 
Ke et al., 2022). Thus, we compared the predictive accuracies among 
different selection strategies of SNPs (GWAS1, GWAS and Random) for 
TL trait to explore the minimum required marker number. Our result 
showed that the strategy of GWAS1 displayed the best performance, 
which could achieve a very high predictive accuracy (>0.9) using only 
500 SNPs. This conclusion is generally consistent with previous GS study 
of orange-spotted grouper (Shan et al., 2022; Shan et al., 2021). How
ever, the predictive accuracies based on the GWAS1 strategy were 
significantly overestimated, which may be due to the disclosure of the 
phenotypes of validation set in the association analysis. This information 
has made a certain contribution to calculating the significant SNPs 
associated with target traits, leading to the bias for ranking of SNPs, and 
ultimately overestimated the predictive accuracy. Despite this, we 
considered that this strategy is still an effective way to optimize GS 
model using cross-validation in the reference population, which could 
obtain the minimum required marker number and predict GEBVs for 
selection candidates accurately. The approach has been proven to be an 
effective method to improve disease resistance to Cryptocaryon irritans in 
large yellow croaker (Zhao et al., 2021). 

For GWAS and Random strategy, our results showed that when the 
SNP density was low, their predictive accuracies maintained at a low 
level (<0.1), but improved significantly when the number of SNP 
increased, indicating that a sufficient marker density is essential for 
obtaining high predictive accuracies of GS models (Spindel et al., 2015). 
Furthermore, the predictive accuracies of GWAS strategy were signifi
cantly higher than that of Random strategy when marker density ach
ieved >500 and 50 SNPs for DY and TS populations, respectively, which 
suggested that using GWAS-informative SNPs had prominent advantage 
in genomic prediction. Moreover, we also found that Random strategy 
required more SNPs than GWAS strategy to achieve the plateau of pre
dictive accuracies The similar results have also been reported for growth 
traits in pacific oyster (Gutierrez et al., 2018), rock bream (Gong et al., 
2021), Atlantic salmon (Tsai et al., 2015b) and Nile Tilapia (Yoshida 
et al., 2019), suggesting that GWAS strategy is a viable cost-efficiency 
approach to achieve high predictive accuracies. 

Moreover, our results showed that the performance of genomic 
prediction of TS population was generally better than DY population and 
DY population also required more SNPs to achieve maximum accuracy 
despite under GWAS strategy, which further indicated that population 
structure, sample size and genetic relatedness could affect the final 
outcome of GP. There is a major challenge for GP study with limited 
population size, as in our case, which is insufficient to estimate effects of 
all SNPs accurately and lead to bias to predict GEBV of validation in
dividuals. It has been demonstrated that increasing population size 
could improve predictive accuracy effectively in many GS studies (Wang 
et al., 2022; Yu et al., 2023; Zhu et al., 2021). Therefore, more inde
pendent populations are needed to increase the population size to obtain 

better GS performance of growth traits in future breeding program of 
spotted sea bass. 

5. Conclusion 

In this study, we demonstrated that the combination of GWAS and GS 
would be a high-efficiency and cost-effective approach for elucidating 
genetic mechanism and predicting GEBV of growth traits, which has 
great potential for genetic improvement in spotted sea bass. A total of 66 
significant SNPs were detected for growth traits, and associated candi
date genes were involved in cytoskeleton reorganization, neuro
modulation, angiogenesis and cell adhesion. Furthermore, VEGF and 
estrogen signaling pathway that significantly enriched in our results 
were also considered to play an important role for growth. Predictive 
performance of different GS models and marker selection strategies were 
compared, which indicated that rrBLUP was the optimal GS model for 
growth traits and using GWAS-informative SNPs was more efficient than 
random selected markers. Our study provided the important basis for 
elucidating the genetic mechanisms of growth regulation in spotted sea 
bass, and proved the feasibility and effectiveness of GS approach for 
genetic improvement of growth traits, which will facilitate future se
lection breeding of fast growth strains in this species. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aquaculture.2022.739194. 
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Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., 
Varshney, R.K., 2017. Genomic selection in plant breeding: methods, models, and 
perspectives. Trends Plant Sci. 22 (11), 961–975. https://doi.org/10.1016/j. 
tplants.2017.08.011. 

Cuyabano, Castro Dias, Wackel, H., Shin, D., Gondro, C., 2019. A study of genomic 
prediction across generations of two Korean pig populations. Animals. 9 (9), E672. 
https://doi.org/10.3390/ani9090672. 

De-Santis, C., Jerry, D.R., 2007. Candidate growth genes in finfish — where should we be 
looking? Aquaculture. 272 (1–4), 22–38. https://doi.org/10.1016/j. 
aquaculture.2007.08.036. 

Di Giovanni, S., Faden, A.I., Yakovlev, A., Duke-Cohan, J.S., Finn, T., Thouin, M., 
Knoblach, S., De Biase, A., Bregman, B.S., Hoffman, E.P., 2005. Neuronal plasticity 
after spinal cord injury: identification of a gene cluster driving neurite outgrowth. 
Federat. Am. Soc. Exp. Biol. 19 (1), 153–154. https://doi.org/10.1096/fj.04-2694fje. 

Dong, L., Xiao, S., Wang, Q., Wang, Z., 2016a. Comparative analysis of the GBLUP, 
emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker 
(Larimichthys crocea). BMC Genomics 17, 460. https://doi.org/10.1186/s12864-016- 
2756-5. 

Dong, L., Xiao, S., Chen, J., Wan, L., Wang, Z., 2016b. Genomic selection using extreme 
phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea). 
Mar. Biotechnol. 18 (5), 575–583. https://doi.org/10.1007/s10126-016-9718-4. 

Eivers, E., McCarthy, K., Glynn, C., Nolan, C., Byrnes, L., 2005. Insulin-like growth factor 
(IGF) signalling is required for early dorso-anterior development of the zebrafish 
embryo. Int. J. Develop. Biol. 48 (10), 1131–1140. https://doi.org/10.1387/ 
ijdb.041913ee. 

Endelman, J., 2011. Ridge regression and other kernels for genomic selection with R 
package rrBLUP. The Plant Genome. 4 (3), 250–255. https://doi.org/10.3835/ 
plantgenome2011.08.0024. 

Fang, C., Zhong, H., Lin, Y., Chen, B., Han, M., Ren, H., Lu, H., Luber, J.M., Xia, M., 
Li, W., Stein, S., Xu, X., Zhang, W., Drmanac, R., Wang, J., Yang, H., 
Hammarström, L., Kostic, A.D., Kristiansen, K., Li, J., 2018. Assessment of the cPAS- 
based BGISEQ-500 platform for metagenomic sequencing. GigaScience. 7 (3), 1–8. 
https://doi.org/10.1093/gigascience/gix133. 

FAO, 2020. The State of World Fisheries and Aquaculture 2020. United Nations Food and 
Agricultural Organization. 
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