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Body colour is an important economic trait for commercial fishes. Recently, a
new colourmorph displayingmarket-favoured yellow skin (termed as yellow-
mutant, YM) of northern snakehead (Channa argus) was discovered in China.
We confirmed that YM snakehead is an albino with complete loss of melanin
in the skin and eyes by histological andultrastructural observations, and inher-
ited as a recessive Mendelian trait. By applying genomic analysis approaches,
in combinationwith gene knockdown and rescue experiments, we suggested a
non-sense mutation in slc45a2 (c.383G >A) is the causation for the YM snake-
head. Notably, significantly higher levels of key melanogenesis genes (tyr,
tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snake-
head than those in wild-type individuals, and the underlying mechanism
was further investigated by comparative transcriptomic analysis. Results
revealed that differential expressed genes involved in pathways like MAPK,
WNT and calcium signalling were significantly induced in YM snakehead,
which might account for the increased amount of melanogenesis elements,
and presumably be stimulated by fibroblast-derived melanogenic factors
in a paracrine manner. Our study clarified the genetic basis of colour
variation inC. argus and provided the preliminary clue indicating the potential
involvement of fibroblasts in pigmentation in fish.
1. Introduction
The northern snakehead (Channa argus) is an economically important freshwater
species being cultured widely in Asia and Africa [1]. With its fast growth, high
nutrition value, significant hypoxia-resistance capacity and pharmaceutical prop-
erties usage in Chinese traditional medicine [2], C. argus has become extremely
popular in China with the annual production exceeding 501 095 tons [3].
During the breeding of C. argus, three varieties with distinct colour morphs
have been discovered in Chinese aquaculture industry, including the wild-type
(WT) with greyish-black body colour (figure 1a), the widely reported white-
albino strainwith stable inheritance of thewhite skin [4] and the newlydiscovered
strain with the golden yellow skin (figure 1b). The golden yellow snakehead was
originally discovered in Shandong Province (35.78° N, 118.62° E), showing the
loss of melanin pigmentation on the body surface and retina (hereafter named
as yellow-mutant (YM) snakehead). So far, as the golden yellow body pigmenta-
tion ismore attractive to consumers especially for aquarium fans, themarket price
for the YM snakehead is significantly higher than that for the WT. However, the
mechanism for the cause of yellow-albino morph remains elusive.

Albinism is characterized by complete or nearly complete absence of melanin
in the eyes and the body [5,6], which is frequently observed in a variety of ver-
tebrates including mammals [7,8], reptiles [9,10], amphibians [11,12], birds

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.220235&domain=pdf&date_stamp=2023-02-15
mailto:yunli0116@ouc.edu.cn
https://doi.org/10.6084/m9.figshare.c.6414118
https://doi.org/10.6084/m9.figshare.c.6414118
http://orcid.org/
http://orcid.org/0000-0002-1950-0190
http://orcid.org/0000-0002-2440-9404
http://creativecommons.org/licenses/by/4.0/


(a) (b)

(c) (d)

(e) ( f ) (g)

wild-type (WT)

16 hpf 36 hpf 16 hpf

2 dpf 3 dpf 5 dpf

24 hpf24 hpf

2 dpf

35 dpf 35 dpf

5 dpf3 dpf

WT

WT

YM

YM

WT WT
M

RPE

LRC
ONL
OPL

INL

IPL

RNFL
RGCL

RPE

LRC

ONL

OPL

INL

IPL

RNFL
RGCL

WT WT WT

YM YM YM YM YM

50 �m 50 �m

100 �m

100 �m

100 �m

50 �m

50 �m

100 �m 50 �m 50 �m

50 �m

50 �m

5 �m 500 �m

500 �m5 �m

1 �m

1 �m50 �m50 �m

WT

WT

YM

WT

YM

YM

WT YM WT WT

WT

WTYM YM

M

M M
M

YM

E

M
M

I

I
I

E

M

M

I

IIV
II

III

WT

YM

WT

YM

YM

yellow-mutant (YM)

Figure 1. The comparative observation of pigmentation phenotype between YM and WT snakeheads. (a) The snakehead adult displaying WT phenotype. (b) The
snakehead adult displaying YM phenotype. (c) Morphologic observation on embryonic and larvae of WT and YM snakeheads. (d ) Histological observation on embryo-
nic and larvae of WT and YM snakeheads. Longitudinal sections show the dorsal sides of 16–24 hpf embryos and 2–5 dpf larvae, respectively. (e) Histological
observation of juvenile fish eyes in WT and YM snakeheads. RPE: retinal pigment epithelium; LRC: layer of rods and cones; ONL: outer nuclear layer; OPL:
outer plexus layer; INL: internal nuclear layer; IPL: inner plexus layer; RNFL: retinal nerve fibre layer; RGCL: retinal ganglion cell layer. ( f ) Microscopic observation
of juvenile fish skins in WT and YM snakeheads. (g) Ultrastructure observation of juvenile fish skins in WT and YM snakeheads. hpf: hours post-fertilization, dpf: days
post-fertilization. M: melanophore; I: iridophore; E: epithelium. I, II, III, IV: stages of melanosome development.
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[13,14] and fishes [15,16]. Mammals and birds possess only one
type of pigment cell, melanocyte, which can produce two
different types of melanin, namely eumelanin (brown/black)
and pheomelanin (yellow/red). By contrast, at least six pig-
ment cell types known as chromatophores, including
melanophore (black), xanthophore (yellow), erythrophore
(red), iridophore (iridescent), leucophore (whitish) and cyano-
phore (blue), have been identified in fish species [17]. Among
them, fishmelanophores are structurally and functionally simi-
lar to melanocytes, which produce only eumelanin, but no
pheomelanin [18]. Nonetheless, the biosynthesis and regu-
lation pathways for the black pigment are conserved to a
certain extent in widely divergent vertebrate taxa.

Melanin is synthesized in the specific lysosome-related
organelles termed melanosomes within melanophores/
melanocytes [19]. Melanosomes undergo four distinct stages
depending on the degree of maturation (stages I–IV) [20].
During these stages, well-established factors related tomelanin
production can be categorized into three groups, including
structural proteins required for melanosomes (PMEL/gp100,
MART-1 and GPNMB), enzymatic proteins involved in
melanogenesis (TYR, TYRP1 and TYRP2/DCT), and proteins
regulating trafficking and processing (APs, OA1, BLOC-1,
P-protein and Rab27a) [21]. In addition, several transcription
factors (CREB, MITF and PAX3) and G protein-coupled recep-
tor (MC1R) are also involved in regulating melanocyte/
melanophore functions [21–24]. Therefore, a number of genes
have been identified to regulate melanin production at differ-
ent levels, and mutation in many of them may affect coat
colour, or give rise to albinism in animals [22]. For example,
in human, mutations in TYR, OCA2, TYRP1, SLC24A5 or
SLC45A2 lead to oculocutaneous albinism, and mutations
in genes related to cellular functions have been identified
as responsible for causing ocular albinism (GPR143, GNAI3),
Hermansky-Pudlak syndrome (BLOC1-3, AP-3) or Chediak-
Higashi syndrome (LYST, CHS1) [25,26]. Pigment-related
gene mutations have also been identified in albino mice
[27,28], monkey [29], horse [30], dog [31] and chicken [32].
Albino phenotypes are more frequently observed in fishes
[33,34] and usually considered as an important appearance
trait producing higher economic and ornamental values than
the wild-type for aquaculture species; however, the causative
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genes of colour mutation have not been clarified in most
of them.

In recent years, the rapid progress in the development of
high-throughput sequencing technologies has provided valu-
able genomic tools for discovering the genetic contributors
for albino phenotypes in teleosts. For example, the genome
sequencing and analysis of strain-specific variants revealed
that mutations in oca2 are likely to be the cause of albinism
in albino goldfish strains [35], and also as the reason for the
amelanistic morph of Malawi golden cichlid fish [36]. The
genome-wide association study (GWAS) analysis indicated
Hps4 as the candidate gene of the catfish albinism [16].
Additionally, bulked segregant analysis (BSA) demonstrated
that mutations in Hps5 may induce oculocutaneous albinism
in three-spine stickleback [37]. Nevertheless, the causality of
the effects of candidate genes has not been verified in most
of the aquaculture fishes due to practical limitations.

In this study, we used genomic resources including whole-
genome resequencing and transcriptomic data, in combination
with phenotypic, genetic and functional assays, which were
integrated to clarify the genetic basis andmolecular regulatory
mechanism of the albinism in YM snakehead. Our findings not
only illuminated the molecular basis underlying the body
colour variation of C. argus, but also provided insight to the
molecular mechanism of albinism in fish.
2. Results and discussion
2.1. YM snakehead displays complete loss of melanin in

the skin and eyes
YM snakehead possesses higher market value than WT
because of its attractive skin coloration, which could bring con-
siderable economic benefits to the C. argus industry. To
examine whether yellow pigment phenotype is albinism, we
investigated the status of melanin synthesis by histological
and ultrastructural observations. As results showed, for the
WT snakehead, the neural crest (NC)-derived body melano-
phores became visible at 24 h post-fertilization (hpf), while
the retinal pigment epithelium started melanization before 2
days post-fertilization (dpf) (figure 1c). Correspondingly, histo-
logical sections revealed that the NC-derived pigment cells
firstly appeared under the epidermal layer of the embryo of
WT snakehead at 24 hpf, with the melanin content increased
significantly at hatching time (2 dpf) and post-hatch stages
(3–5 dpf) (figure 1d). By contrast, for the YM, melanin in
NC-derived melanophores was undetectable across the body
during the entire tested periods (figure 1c). It seemed to present
slight pigmentation in the eyes of YM snakehead, which was
proved not to be melanin through histological observation
(figure 1e), as well as homogeneous eye tissues visualized in
the tubes (electronic supplementary material, figure S1). The
colour may result from the microvessels in the iris.

Direct observation through microscope for fresh skin
tissue of juvenile fish showed that WT snakehead contained
the mature dendritic melanophores with typical melanin
granules and the round xanthophores with yellow pigments
(such as pteridines and carotenoids), whereas only xantho-
phores were detected in YM snakehead (figure 1f ). Further,
the ultrastructural morphology of juvenile skin showed
that WT skin contained large melanosomes in all stages of
maturation, primarily of stage III and stage IV, while YM
melanophores displayed fewer, smaller and immature mela-
nosomes (figure 1g). In addition, fishes’ iridophores usually
contain large, thin and flat-shape purine crystals called
reflecting platelets [18]; however, only numerous cavities
were detected in both WT and YM (figure 1g), which may
result from loss of reflecting platelet crystals from prepared
sections as glutaraldehyde fixation or dehydration through
an alcohol or acetone series [18]. Our results demonstrated
that the complete loss of melanin in YM snakehead is the
direct cause of the yellow colour phenotype.
2.2. YM snakehead is inherited in autosomal-recessive
manner

The inheritance pattern of albinism has been studied earlier in a
variety of aquaculture fishes. In several investigated cases, the
albinism was controlled by an autosomal-recessive mutation,
such as grass carp [5] and channel catfish [16,38]. On the con-
trary, the red body colour of tilapia is dominant controlled by
a single gene [39]. In the case of rainbow trout, bothmonogenic
recessive and dominant albino mutations have been described
[40–42]. For other species like Cyprinus carpio, the pigment-
related traits were identified to be determined by polygenic
factors [43,44]. To test the inherent pattern of body coloration
in YMsnakehead, different crosseswere constructed to produce
F1 and F2 generation progenies to investigate segregation.
Results show that all F1 offspring derived from the crosses
within WT or YM snakehead resembled the body colour of
their parents, which were black (100%) for WW, and yellow
(100%) for YY (figure 2; electronic supplementary material,
table S2). Meanwhile, all F1 offspring from reciprocal crosses
between WT and YM snakehead (WY and YM) showed black
phenotype (100%), indicating the black colourofWTsnakehead
is dominant over the yellow of mutants (figure 2). Further, the
observed frequencies of F2 generation approximated to the typi-
cal Mendelian segregation ratio of 1 : 1 for offspring generated
from YW♀ ×YY♂ (0.95 : 1), YY♀ ×YW♂ (1.05 : 1), WY♀ ×YY♂
(1.07 : 1) and YY♀ ×WY♂ (0.95 : 1), as well as 3 : 1 for offspring
generated from YW♀ ×YW♂ (3.08 : 1), WY♀ ×WY♂ (2.86 : 1),
WY♀ ×YW♂ (2.91 : 1) and YW♀ ×WY♂ (3.05 : 1), respectively
(figure 2; electronic supplementary material, table S2), demon-
strating that the yellow colour mutant in C. arguswas inherited
in autosomal-recessive manner.
2.3. Identification of the candidate causal genomic
locus for the YM phenotype by screening
single-nucleotide polymorphism markers

We sequenced the whole genomes of 20 yellow-albino pheno-
type and 20 black phenotype individuals of the F2 progeny,
which were generated from intercross between YW♀ and
WY♂, producing 9.26 Gb whole-genome sequencing (WGS)
data per fish on average (approx. 12.91×) (electronic supplemen-
tary material, table S3). After filtering, a total of 671 874 high-
quality single-nucleotide polymorphisms (SNPs) was obtained
for GWAS using the logistic regression model, which revealed
a single genome-wide peak (genome-wide significance
threshold was calculated as 7.83), a 13.98 Mb genomic region
on Chromosome 19 (4 542 570–18 525 309), containing 1017
significantly associated SNPs within this region (figure 3a).
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To further narrow down the candidate genomic loci, we
performed WGS on unrelated fish individuals, generating
three DNA bulks with homozygous WW pool (n = 24, cover-
age = 35.31×) and YY pool (n = 24, coverage = 33.79×), as well
as F1 heterozygous pool (n = 24, coverage = 29.94×), respect-
ively, to measure the allele frequency differences (electronic
supplementary material, table S3). Because the yellow pheno-
type is controlled by the recessive factor, SNPs were screened
by allele genotype according to the following criteria:
(i) SNPs must consist of only two allele types (one for the
reference allele, another for variant allele); (ii) SNP sites at
WW (same as the reference allele) and YY (the variant
allele) are homozygous with different genotypes, but are het-
erozygous at F1 heterozygotes (contained both reference
allele and variant allele). The Chi-square goodness-of-fit
with a null hypothesis of equal amounts of the two alleles
(with the 1 : 1 ratio) in the F1 heterozygotes was used to
examine the allele ratio. After screening, 7068 SNPs passed
all filtering criteria, of which 290 fell into the 13.98 Mb candi-
date genomic interval of GWAS. Among them, 68 SNPs were
overlapped with the significantly associated SNPs of GWAS,
containing 23 SNPs that were perfectly associated with pig-
mentation trait of fish samples used in GWAS analysis,
which means all 20 yellow-albino individuals possessed
‘aa’, and all 20 individuals with black phenotype have ‘AA’
or ‘Aa’ at these SNP loci (figure 3b–d). Only one of these
SNPs was located in the protein-coding region, resulting in
non-sense mutation in the gene of slc45a2 (figure 3e).
2.4. A premature stop codon in SLC45A2 might be
responsible for YM phenotype

Based on WGS analysis, we identified the non-sense mutation
of slc45a2 as the candidate causative mutation for YM pheno-
type (figure 4a). Correspondingly, SLC45A2 gene has been
identified to be responsible for the dilute phenotype in the
cream horse [30], silver chicken [32] and white tiger [7], as
well as the pale orange skin of medaka mutant strain [45]. In
humans, SLC45A2 mutations cause oculocutaneous albinism
type 4 (OCA4), which is an autosomal-recessive disorder
with abnormal melanin formation in the skin, hair follicles
and eyes [46].

We next validated the identifiedmutation site in slc45a2 via
Sanger sequencing using a number of samples of WT, YM and
F1 heterozygote individuals, and the results were consistent
with expected segregation pattern (figure 4b). As shown in
figure 4a, the mutation site in YM snakehead was located at
the nucleotide position 383 (c.383G >A) of slc45a2. The G-to-
A transition in the first exon led to a stop codon TAG that sub-
stituted the tryptophan at the residue 128 and resulted in the
translation termination. The site of residue W128 of SLC45A2
was found to be highly conserved among vertebrates
(figure 4c). The early stop codon in SLC45A2 was predicted
to truncate the protein in themajor facilitator superfamily hom-
ologue domain [47], likely resulting in non-functional protein.
Afterwards, we examined the protein level of SLC45A2. As
expected, due to the premature stop codon, the protein of
SLC45A2 was not detected in YM skin, whereas abundant
SLC45A2 protein was found in WT individuals (figure 4d).

To confirm the function of slc45a2 for melanin synthesis in
C. argus, the ATG-blocking morpholino designed against
slc45a2 was injected into the yolk at 1–4 cell stages of WT sna-
kehead embryos. About 24 h after injection, 34 WT embryos
injected with slc45a2 morpholino displayed a severe
reduction of pigmentation, and the melanin distributed
unevenly (figure 4e). Alternatively, the controls injected
with standard control morpholino retained the normal pig-
mentation, with the dense melanin uniformly distributed
over the whole skin (figure 4e).

Furthermore, the mRNA rescue experiment was performed
to determine if exogenous WT slc45a2 mRNA could rescue the
albino phenotype. As shown in figure 4f, injection of slc45a2WT

significantly increased pigmentation levels in YM embryos, sev-
eral dendritic melanophores being observed at the NC. In total,
52 larvae displayed different degree of pigmentation recovery in
YM fish. On the contrary, injection of physiological saline into
the YM embryos did not lead to any phenotypic changes
(figure 4f ). Therefore, morpholino-based knockdown and
mRNA rescue experiments suggested strongly that the non-
sense mutation in slc45a2 was responsible for the albino pheno-
type of YM snakehead and we refer to this allele as slc45a2YM.
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SLC45A2 was recognized as a H+-coupled sugar cotran-
sporter, containing 12 transmembrane domains [48]. Two
independent roles of SLC45A2 in melanogenesis have been
reported: to promote TYR processing and intracellular
trafficking to melanosomes, and to positively regulate pH
neutralization and TYR function through H+ efflux [24].
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Both explanations have been supported by experimental
evidences [49–51], but the function of SLC45A2 in pH regu-
lation is more certain. Melanosomes in different stages have
different internal pH [24]. Non-pigmented melanosomes of
stage I–II exhibit acidic pH, which are generated by vacuolar
H+-ATPase (V-ATPase) through mediating H+ influx [52].
Stage III–IV melanosomes are modulated to neutral pH, in
order to preserve the function of TYR, the rate-limiting
enzyme in the process of melanin production [24,53]. The
internal pH of melanosomes is neutralized by a combina-
tional function of several membrane transporters, of which
SLC45A2 is suggested to be the most promising molecule
by several lines of evidence [24,54]. For examples, the func-
tional deficiency of TYR in slc45a2-mutant albino zebrafish
can be rescued by inhibition of V-ATPase or SLC45A2 RNA
injection [50]. Also, the knockdown of SLC45A2 in human
melanoma cell line reduced melanosomal pH, tyrosinase
activity and melanin content [55]. Recently, it was demon-
strated that Slc45a2 deficiency significantly increased the
acidification of melanosomal pH through enhanced glycoly-
sis to inhibit melanin biosynthesis and promote melanoma
metastasis [54].
2.5. The expressions of core melanogenesis genes and
nuclear phospho-MITF protein level significantly
increased in YM snakehead

We conducted western blotting to detect weather the protein
level of TYR was affected by the loss-of-function mutation of
SLC45A2 in YM snakehead. Notably results showed that the
TYR protein level in skins of YM was significantly higher
than that of theWT (figure 5a).We then performedquantitative
polymerase chain reaction (qPCR) to detect the mRNA
expression levels of tyr gene, as well as other melanogenic
genes which are known to play key functions in tyrosine
metabolism including tyrosinase genes (tyrp1a, tyrp1b, dct
and pmel) [53]. Corresponding to upregulated protein level of
TYR, all of these genes exhibited significant higher expression
levels in YM than in WT snakehead (figure 5b). Additionally,
the expression values of all five genes in YMwere dramatically
higher than those in WT during different ontogenetic stages
(16 hpf, 24 hpf, 3 dpf, 4 dpf, 5 dpf, 8 dpf and 3 mpf) (figure 5b).

We subsequently detected the expression level of micro-
phthalmia-associated transcription factor (MITF), which is
the master transcription factor that regulates melanogenesis
by activating the transcription of downstream melanogenic
genes including tyr, tyrp1, dct and pmel [53,56]. Although the
two coding gene copies of mitf (mitfa and mitfb) did not show
significant expression difference between the two skin types
at the transcriptional level (figure 5c), we demonstrated that
the nuclear phospho-MITF(Ser180) protein level in YM group
was significantly higher than that in WT group by western
blotting (figure 5d), which should be the reason for the
upregulated expression of the above-mentioned melanogenic
genes [57–60].
2.6. RNA-Seq analysis provided preliminary clues for
revealing the potential regulatory mechanism of
melanogenesis in snakeheads

To further investigate the molecular changes and potential
regulatory pathways in the control of melanogenesis under-
lying the loss-of-function mutation of SLC45A2, RNA-Seq
analysis was performed on the skin tissues of WT and YM
snakehead to compare the gene expression differences. We
obtained a total of 492 324 374 raw reads from six cDNA
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libraries, of which 484 226 220 (about 72.63 Gb) clean reads
remained for further analysis after discarding the adapter,
poly-N or low-quality sequences. The mapped clean reads
percentage of the six cDNA libraries ranged from 91.83% to
94.60%. The average clean Q30 and GC percentage for each
library was greater than 92.37% and 45.62%, respectively
(electronic supplementary material, table S4), which indicated
that our RNA-Seq data were of high quality and suitable
for the subsequent analyses. A total of 534 differential expres-
sed genes (DEGs) were identified using DESeq2 software
(p-adjusted < 0.05, |log2(fold change)| < 1), of which 492
genes were upregulated and 42 were downregulated in the
YM snakehead compared with the WT snakehead, with the
log2(fold change) values ranging from 7.28 to −10.69
(figure 6a; electronic supplementarymaterial, table S5). To vali-
date the RNA-Seq results, we selected 13 genes involved in
melanin biosynthesis for qPCR analysis. As shown in
figure 6b, the qPCR expression patterns of 13 DEGs agreed
with the results of RNA-Seq analysis.

All DEGs generated from RNA-Seq data were subjected to
GOandKEGG functional enrichment analysis. Results showed
that themost concentratedGO terms of DEGs betweenWTand
YM individuals contained extracellular matrix (ECM) organiz-
ation (GO:0030198) in biological process (BP), extracellular
space (GO:0005615), extracellular region (GO:0005576),
ECM (GO:0031012), external side of plasma membrane
(GO:0009897) and melanosome (GO:0042470) in cell compo-
sition, as well as calcium ion binding (GO: 0005509) in
molecular function (figure 6c). KEGG enrichment analysis
revealed that besides pigmentation-related pathways like tyro-
sine metabolism and melanogenesis, DEGs were significantly
enriched in several signal transduction and interaction path-
ways like MAPK, WNT and calcium signalling pathways, as
well as ECM–receptor interaction and focal adhesion pathways
(figure 6d; electronic supplementary material, table S6). We
identified 38 candidate DEGs genes involved in the regulation
of melanogenesis, melanosome biogenesis, melanosome trans-
port, tyrosine metabolism and ECM molecules (electronic
supplementary material, table S6). Those DEGs in most of
above-enriched GO terms and KEGG pathways were signifi-
cantly upregulated in the skin of YM snakehead (electronic
supplementary material, table S6), which may arise from the
feedback on melanogenesis due to the lack of melanin
protection against UV radiation from sunlight [61–65].

Based on the above bioinformatic analysis results in
combination with manual literature searches, we speculated
the potential functions of DEGs and enriched pathways in pig-
mentation underlying the YM phenotype. Our hypothesis
is summarized in figure 7 and discussed as follows. (i) At
the skin of YM snakehead, we detected an increase in phos-
phorylated MITF protein level, leading to the upregulated
expressions of downstream melanogenesis genes such as tyr,
tyrp1, dct and pmel. However, this did not result in a higher syn-
thesis of melanin due to the loss-of-function mutation of
SLC45A2, which might cause failure to neutralize the melano-
somal pH and inactivate TYR [24]. (ii) The increased amount of
p-MITF protein in YM snakehead was suggested to be regu-
lated by the induced DEGs involved in signalling pathways
like MAPK, WNT and calcium, which have been widely
demonstrated as crucial pathways regulatingmelanin synthesis
[64,65]. (iii) These intracellular signalling pathways might be
stimulated by mediators from neighbour cells, such as
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fibroblasts, since we have identified several fibroblast-derived
melanogenic factors showing increased expression in YM sna-
kehead (figure 7; electronic supplementary material, tables S5
and S6). Although this has not been proved in fish species,
studies ofmammals have increasingly demonstrated the impor-
tant role of fibroblasts in the process of skin pigmentation [66].
These studies indicated that melanogenic factors were syn-
thesized by fibroblasts and function in a paracrine manner on
melanocytes [66]. In the case of YM snakehead, we speculated
that the lack of melanin leads to reduced UV absorption and
increased UV penetration through the epidermis [67], which
might be the trigger for the upregulations of these dermal fibro-
blast-derived melanogenic factors, as well as above-mentioned
melanogenic related genes and pathways. However, our
assumption about the roles of fibroblasts in fish pigmentation
needs to be further validated by functional experiments.
3. Conclusion
In this study, we characterized the newly discovered colour
morph of northern snakehead possessing pleasant golden
yellowskin beingan albinowith complete loss ofmelanin, inher-
ited in an autosomal-recessivemanner. Thegenetic basis of body
colourmutationwas investigated byWGS approaches in combi-
nation with gene knockdown and rescue experiments, which
indicated that a premature stop codon in slc45a2was the causa-
tive mutation. We surprisingly found an elevated phospho-
MITF protein level and keymelanogenesis genes in the YM sna-
kehead, which was speculated to be stimulated by fibroblast-
derived melanogenic factors deduced from RNA-Seq results.
Our study has elucidated the underlying molecular basis for
body colour variation in YM snakehead, which has already
been explored as a target for new variety breeding programme
in China. Additionally, the precise role of fibroblasts in melano-
phore pigmentation needs to be investigated in future studies.
4. Methods
4.1. Chromatophore examination, histological and

ultrastructural observation
The experimental fish were reared in a C. argus breeding farm
named Daqiang Fishery Co. Ltd in Linyi, Shandong Province,
China (35.78° N, 118.62° E). All the experimental fish were
raised in outside ponds. Embryos and larvae of WT and YM
snakehead at different developmental stages were collected.
Half of these samples were used for direct morphologic obser-
vation, and the other half were fixed for 24 h in Bouin’s solution
for histology. Juveniles (body length: 17.6 ± 1.8 cm; body
weight: 78.1 ± 12.5 g) of two colour morphs were anaesthetized
with tricaine methane sulfonate (MS-222) in a dose of 300 ppm
before sampling. Subsequently, eyes were dissected, and part of
them were fixed in Bouin’s solution, meanwhile the other part
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was placed in 1.5 ml microfuge tubes, and homogenized in 1 ml
of phosphate-buffered saline (PBS) buffer by a homogenizer
(DHS Life Science & Technology Co. Ltd, China). Small
pieces of skin at the dorsal side above the lateral line were
surgically excised (electronic supplementary material, figure
S5) and washed with PBS for direct observation. In addition,
the same position of skin tissues was collected for histological
and ultrastructural observation. Those fixed samples were
dehydrated through a graded alcohol series and embedded in
paraffin wax, sectioned at 6 µm using an RM 2016 microtome
(Leica, Germany) and stained with eosin. Five sections of
each sample were taken for observation and photography. All
the above images were visualized and captured by a DP73
microscope digital camera (Olympus, Japan).

Ultrathin sections for ultrastructural observation were pre-
pared as follows: skin tissue was fixed in 0.1M PBS (pH 7.4)
containing 2.5% glutaraldehyde for 12 h, washed for 30 min
in PBS, post-fixed for 1 h in 1% osmium tetroxide and then
dehydrated through an ascending series of ethanol and
embedded in epoxide resin. Subsequently, sections of 80 nm
were obtained using an ultramicrotome and were mounted
on multiple-hole copper grids, stained with uranyl acetate
and lead citrate. Twenty ultrathin sections were obtained
from each of WT and YM skin samples. Five images were
taken from each section. These images were examined using
a transmission electron microscope (JEM-1200EX, Japan) oper-
ating at 80 kV. Four distinct stages of melanosomes depending
on the degree ofmaturationwere defined. In detail, stage Imel-
anosomes are unpigmented spherical vacuoles with an
amorphous matrix; stage II melanosomes exhibit an ellipsoidal
shape containing a fibrillar internal matrix; stage III melano-
somes contain a structured matrix with apparent melanin
deposition; finally, the melanosomes are fully pigmented
with highly dense melanin deposits in stage IV [19,68].

4.2. Construction of WT and YM snakehead crosses
Channa argus founders from the WT and YM variants were
selected forartificial reproduction, following themethodofKah-
kesh [69] with minor modifications. A total of eight F1 families
were established by crossing between two colour morphs or
within the same colour type (electronic supplementarymaterial,



royalsocietypublishing.org/journal/rsob
Open

Bio

10
figure S6). In detail, three F1 families were generated by crossing
betweenWT females and YMmales (WT♀ ×YM♂, termedWY),
three reciprocal F1 families were constructed by mating YM
females with WT males (YM♀ ×WT♂, YW), and one family
for WT (WT♀ ×WT♂, WW) and one for YM type (YM♀ ×
YM♂, YY) were established.

After 2 years of cultivation, well-developed F1 individuals
reaching sexual maturity were selected from each family to
produce F2 generation. The mating pairs were settled as fol-
lows: 1# (YW♀ × YW♂), 2# (WY♀ ×WY♂), 3# (YW♀ ×WY♂),
4# (WY♀ × YW♂), 5# (YW♀ × YY♂), 6# (YY♀ × YW♂), 7#
(WY♀ × YY♂), 8# (YY♀ ×WY♂), 9# (YY♂ ×WW♀) and 10#
(YY♀ ×WW♂) (electronic supplementary material, figure
S6). The segregation ratios of the offspring for each mating
pair were counted by random sampling for three times
with about 500 offspring per time.
l.13:220235
4.3. Whole-genome resequencing and genome-wide
association analysis

Twenty fish individuals with each of yellow phenotype and
black phenotype were randomly selected from the 3#
(YW♀ ×WY♂) family of the F2 generation. These 40 fish
were used for GWAS to identify candidate genomic loci
responsible for body colour mutations. For each sample,
genomic DNA was extracted from fin tissue using the TIA-
Namp Marine Animals DNA Kit (TIANGEN, China). The
150 bp paired-end sequencing libraries with insert size of
350 bp were constructed following the instruction of TruSeq
Library Construction Kit (Illumina, USA) and then were
sequenced by DNBSEQ-T7 platform.

Raw reads generated from WGS were processed to remove
the low-quality sequences by fastp (v 0.20.0) with default par-
ameters, and the clean reads of all libraries were separately
mapped to the reference genome of the C. argus (accession no.
JAJQTP000000000) using BWA (v 0.7.17) mem mode (settings:
mem -t 4 -k 32 -M -R) [70]. Alignment files were converted to
BAM files using SAMtools (v 1.10) (settings: -bS -t) [71]. In
addition, potential PCRduplicationswere removed using SAM-
tools command ‘rmdup’. Variants callingwere performed for all
BAM files by the HaplotypeCaller protocol in GenomeAnalysis
Toolkit (GATK, v 3.8) (http://www.broadinstitute.org/gatk/
download) [72]. The SNPs were filtered using GATKVariantFil-
tration with parameter setting as follows: –filterExpression
‘QD< 4.0, FS > 60.0, MQ< 40.0’, -G_filter ‘GQ< 20’. InDel was
filtered by the following parameters: –filter Expression ‘QD<
4.0, FS > 200.0’. We further filtered the variants with ‘–min-
meanDP 5, –max-meanDP 250, –max-missing 0.95’ using
VCFtools (v 0.1.16) [73]. Logistic regression model using Plink
(v 1.90) software [74] was used to perform the GWAS analysis.
The statistical significance threshold was defined by a Bonfer-
roni correction for multiple testing (−log10(0.01/N), where N
is the number of total SNPs used for association test). The
CMplot R package was used to create the Manhattan
plot (https://github.com/yinlilin/cmplot). The significant
SNPs were annotated by ANNOVAR [75] based on the GFF
files of the reference genome.

To further verify the genomic loci potentially linked to
pigmentation genes, three WGS libraries including WW
pool, YY pool and F1 heterozygotes pool were generated
using fish samples of F1 families, and were used for BSA
analysis. For each library, genomic DNA was extracted from
fin tissue samples of 24 fish individuals and equally
pooled. One hundred and fifty paired-end sequencing was
performed on the Illumina Hiseq™ platform. Sequencing
data processing and SNP filtering were performed using
the same method as the above GWAS analysis.

4.4. RNA-Seq analysis
For transcriptome sequencing, skin tissues from 9WTand 9 YM
snakehead were extracted using TRIzol (Invitrogen, USA).
Equal amounts of RNA from three individuals for each colour
variant were pooled, and a total of six sequencing libraries
were generated using NEBNext® Ultra™ RNA Library Prep
Kit for Illumina® (NEB, USA) following the manufacturer’s
instructions. Then, the libraries were sequenced on an Illumina
HiseqTM platform for generating 150 bp paired-end reads.

The raw sequencing datawere subjected to adaptor trimming
and quality filtering using Trimmomatic (v. 0.39). The obtained
clean reads were aligned to the reference genome of C. argus
using Hisat2 (v. 2.0.4). The gene expression levels were normal-
ized by the FPKM algorithm. Transcripts were considered to be
expressedwhen the FPKMvalues > 1 in the three biological repli-
cates. Differential gene expression analysis was performed using
the DESeq2 R package (v 1.0). The DEGs were determined with
the thresholds of q-value (adjusted p-value using the Benjamini
and Hochberg method) < 0.05 and |log2(fold change)| > 1.
Enrichment analyses based on GO and KEGG were further
performed to identify the function of the DEGs.

4.5. Sanger sequencing validation for candidate
mutation site

Themutation site of slc45a2was tested inWT, YM and F1 hetero-
zygotes (WYor YW). Thirty individuals were selected from each
population for DNA extraction and used as templates for PCR
reaction, and these fishwereunrelated individuals.ThePCRreac-
tion system contained 1 µl each of forward and reverse primers
(10 pM) for slc45a2 gene (forward: 50- TGACCCTGTTATCA
GAGGACCAG-30; reverse: 50-CTGAGATGATAGCATCCCC
GTT-30), 10 µl of Taq PCR Mix 2× (Vazyme, China), 1 µl of
DNA template and 7 µl RNAase-free water. PCR amplification
was performed on a T100™Thermal Cycler (Bio-Rad,Germany)
as follows: initial denaturation at 95°C for 3 min, followed by 35
cycles at 95°C for 30 s, 55–60°C for 30 s and 72°C for 10 min. PCR
products with expected sizes were sequenced by the Sanger
sequencing method (BGI company, China).

4.6. Quantitative real-time polymerase chain reaction
The qPCR was performed to validate the results of RNA-Seq,
while the relative gene expression levels of selected genes (tyr,
tyrp1a, tyrp1b, dct, camk2a, jun, slc47a1, wnt2b, pv, fgf1, col1a1,
hsp70 and ccz1) were detected in adult skin tissues of the two
colour variants. In addition, the expression levels of key genes
for melanin synthesis including tyr, tyrp1a, tyrp1b, dct, pmel
were examined in different developmental stages. The primer
sequences are listed in electronic supplementary material,
table S1. The qPCR reaction volume was 20 µl, including 10 µl
of SYBR®FAST qPCR Master Mix (2×), 0.4 µl ROX reference
dye, 0.4 µl each of forward/reverse primers (10 pM), 6.8 µl
RNAase-free water and 2.0 µl of cDNA template (10× diluted).
qPCR was performed using a StepOne Plus Real-Time PCR

http://www.broadinstitute.org/gatk/download
http://www.broadinstitute.org/gatk/download
https://github.com/yinlilin/cmplot


royalsocietypublishing.org/journal/rsob
Open

Biol.13:220235

11
system (Applied Biosystems, USA) and was run in accordance
with following procedure: 95°C for 30 s, followed by 40 cycles
of 95°C for 5 s, 60°C for 30 s and a final extension at 72°C for
2 min. The β-actinwere used as internal reference genes to nor-
malize the gene expression level and the relative gene
expression levels were calculated using the 2−ΔΔCT method.

4.7. Morpholino-mediated gene knockdown
Using the full-length sequence of C. argus slc45a2, a morpholino
was designed to the 50 ATG translational start site. Both the
ATG-blocking morpholino targeting slc45a2, and the standard
control morpholino were obtained from Gene Tools (https://
www.gene-tools.com/). The sequences were designed as fol-
lows: slc45a2_atg: 50-GTCCTCTGATAACAGGGTCATGGT-30

and standard control: 50-CCTCTTACCTCAGTTACAATT-
TATA-30. A mixture containing 1 mM morpholino and 1.0%
phenol red indicator was injected into the yolk at 1–4
cell stage embryos of WT snakehead with a PCO-1500 Micro-
injector (ZGENEBIO, China). After injection, embryos
were incubated at 26°C until hatching. The phenotype of
injected embryos was observed from 24 hpf (when the melanin
began to appear) and photographed by an SZ810 stereomicro-
scope (CNOPTEC, China).

4.8. Rescue experiment by messenger RNA injection
The full-length sequence of slc45a2 was amplified from cDNA
derived from WT C. argus via PCR using the following
primers: slc45a2-HindIII F: 50-ctagcgtttaaacttaagcttATGACCC
TGTTATCAGAGGACCA-30 and slc45a2-BamHI R: 50- ccacact
ggactagtggatccTCAATCCACATATCTGACAAAGAGG-30. The
product was ligated into the pcDNA3.1 (+) vector using the
ClonExpress® Ultra One Step Cloning Kit (Vazyme, China).
The resulting plasmid was verified by sequencing, and mes-
senger RNA was transcribed using the T7 High Yield RNA
Transcription Kit (Vazyme, China). Injections were carried
out at 1–4 cell stage of YM snakehead at a concentration of
200 ng µl−1. After injection, embryos were incubated at 26°C
until hatching. The phenotype of injected embryos was
observed from 24 hpf and photographed by an SZ810
stereomicroscope (CNOPTEC, China).

4.9. Western blot analysis
Western blotting assay was carried out to compare protein
abundances of TYR and SLC45A2, and phosphorylation
levels of MITF between WT and YM snakehead. In detail,
RIPA lysis buffer (Solarbio, China) containing 1% phenyl-
methylsulfonyl fluoride was applied to isolate total protein
from skin tissues. Then, the supernatant was harvested follow-
ing centrifugation at 4°C for 5 min at a speed of 12 000 rpm,
and the protein concentrations were assessed with a BCA
Protein Quantification Kit (Vazyme, China). After that, pro-
teins were denatured at 98°C for 8 min and an equal amount
of proteins from each sample were separated by 10% SDS-
PAGE and then transferred into 0.25 µm PVDF membranes
(Millipore, Billerica, MA, USA). The membranes were blocked
using QuickBlock blocking buffer (Beyotime, China) for 2 h
and incubatedwith the indicated primary antibodies overnight
at 4°C. The primary antibodies included (i) the rabbit anti-
human primary antibody TYR (1 : 500, No. ab180753, Abcam,
UK), (ii) the rabbit anti-C. argus primary antibody SLC45A2
obtained from the anti-serum of immunized rabbits which
has been injected by the synthesized SLC45A2 peptide
(EVQQKPRGSNESLRG) of C. argus (Genecreate, China), (iii)
the phospho-specific primary antibody for MITF (p-MITF
(Ser180) antibody, No. AF3027, Affinity Biosciences, China) and
(iv) the rat anti-humanprimaryantibody β-ACTIN (1 : 1000, Beyo-
time, China). TBST was washed three times, then HRP-labelled
goat anti-rabbit and goat anti-rat secondary antibody (1 : 5000,
Sangon Biotech, China) was added and incubated at 37°C for 1
h. TBST was washed three times. Colour was developed with
ECL chemiluminescence solution, protein expression signalling
was detected by using a gel imaging analysis system (Eberhard-
zell, Germany). ImageJ software was applied for protein
quantitation. All experiments were performed in triplicate.

4.10. Statistical analysis
Gene expression and statistical analysis were carried out as
described above. All experiments were carried out in tripli-
cate. Values are presented as the mean ± s.e.m. Statistical
analysis was performed by GraphPad Prism 8.0 software
(GraphPad Software Inc., USA). Univariate analysis of var-
iance was performed using SPSS 25.0 software (IBM, USA),
and p-values < 0.05 were considered statistically significant.

Ethics. All procedures involved in handling and treatment of fish in
this study were approved by Animal Research and Ethics Commit-
tees of Ocean University of China (Permit Number: 20141201). The
field studies did not involve endangered or protected species.
Data accessibility. The whole-genome resequencing data have been
deposited in the NCBI Sequence Read Archive (SRA) with accession
no. PRJNA834927. The transcriptome data can be accessed with
accession no. PRJNA772548.

The data are provided in the electronic supplementarymaterial [76].
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