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A B S T R A C T   

Crassostrea nippona is a commercially important oyster species in East Asia for it is edible during the summer 
when the other oyster species are unavailable. Salinity is one of the important limiting factors to the survival and 
distribution of this stenohaline species. In this study, 535 million reads (74G data) from C. nippona were pro-
duced and assembled into 66,742 transcripts. The number of 19,253 differentially expressed genes (DEGs) under 
salinity stress were identified as salinity stress-response genes. Through comparative evolutionary analysis in five 
Crassostrea species from East Asia, salinity stress-response genes were noticed to have higher adaptive evolution 
rates than other genes. This study presents the first de novo transcriptome of C. nippona. Furthermore, 
comparative evolutionary analysis implies that salinity plays an important role in speciation of Crassostrea 
species.   

1. Introduction 

Coastal marine systems are the most ecologically and socio- 
economically vital on the planet (Harley et al., 2006). Seasonal and 
tidal fluctuations of salinity are characteristics of this area. Aquatic 
animals that live in the intertidal zone have different adaptations to exist 
at varying salinity (Drouin et al., 1985). Most invertebrates are known as 
osmoconformers which adapt the extracellular fluid (ECF) to the 
ambient environment rather than maintain stable ECF (Bourque, 2008). 
The salinity stress especially reduced salinity caused by heavy rainfall 
and river injection influences metabolic and physiological parameters of 
these organisms (Butt et al., 2006; Gagnaire et al., 2006; Nell and Hol-
liday, 1988; Tirard et al., 1997) and even causes the mass mortality 
(Gunter, 1955; La Peyre et al., 2013; Soletchnik et al., 2007). 

Oysters within the genus Crassostrea are important commercial 
mollusks in East Asia. They have variant biotypes along the coast (Guo 
et al., 1999; Okutani, 2000) that are hypothesized to reflect differences 
in their tolerances of salinity (Braby and Somero, 2006). Asia-Pacific is 
considered as epicenter of extant oyster speciation and most species 
have originated in estuarine waters such as Crassostrea gigas, C. angulata, 
C. hongkongensis (Ahmed, 1976; Ren et al., 2010). Among them, 
C. nippona is a benthic species in shallow water along the coast (Okutani, 

2000) and diverges early from other Asian Crassostrea oysters demon-
strated from phylogenetic analysis (Yu and Li, 2012). Other than this, 
there are limited studies on C. nippona. To date, karyotype analysis, shell 
matrix, taxonomy, and growth and survival of larvae and juvenile have 
been documented in C. nippona (Itoh et al., 2004; Kudo et al., 2010; 
Samata et al., 2008; Wang et al., 2018; Wang and Li, 2018). 

In this study, the Illumina platform was employed to obtain the 
transcriptome information for C. nippona. Furthermore, the adaptive 
evolution rates of salinity stress-response genes in Crassostrea oysters 
were quantified with an aim to explore the evolutionary history of Asian 
Crassostrea oysters. 

2. Data description 

2.1. Biological materials 

Adult Crassostrea nippona were cultured at Rongcheng, Shandong 
Province, China. Tissues from the mantle (M), visceral mass (V), 
adductor muscle (A) and gill (G) were collected from healthy oysters and 
immediately placed into liquid nitrogen to freeze and then stored at 
− 80 ◦C for constructing C. nippona reference transcriptome. 
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2.2. Salinity stress 

The experimental C. nippona were maintained in 70 L tanks con-
taining aerated sand-filtered seawater (30 psu) for one week prior to 
experimentation, then randomly divided into 3 groups under hypo- 
salinity stress in seawater with salinity of 10 (S1), 20 (S2), and 30 psu 
(S3) for one week. The low salinity water was prepared by diluting sea 
water with tap water. 

2.3. RNA isolation, library construction and sequencing of C. nippona 

Each sample was lysed in 1 ml of TRIzol Reagent (Invitrogen, USA) 
for total RNA extraction according to the manufacturer’s instructions. 
The purity and integrity of total RNA was determined using a NanoDrop- 
2000 spectrophotometer (Thermo, USA) and an Agilent 2100 Bio-
Analyzer (Agilent Technologies, USA). 

The mRNA was enriched by Oligo(dT) beads and then fragmented. 
The cDNA was synthesized with random hexamers via mRNA fragments 
as templates. The cDNA fragments were purified and resolved with EB 
buffer for end repair, single-nucleotide adenine (A) addition and adapter 
connections. After PCR amplification, the 150 bp library was then 
sequenced via an Illumina HiSeq™ 4000. 

2.4. Transcriptome assembly of C. nippona and reads mapping 

Clean reads were obtained by removing “dirty” reads containing 
adapter sequences, sequences with more than 10% unknown bases 
(“N”), and low-quality reads containing more than 40% of low quality 
(Q-value≤10) bases through fastp v0.18.0 (Chen et al., 2018). Reference 
transcriptome was de novo assembled by Trinity v2.8.4 (Grabherr et al., 
2011) and run against metazoan databases with BUCSO v3.0.2 
(Waterhouse et al., 2017) to check the completeness. Clean reads were 
mapped against the reference transcriptome using alignment tool 
Bowtie2 (Langmead and Salzberg, 2012) with default parameters. RSEM 
v1.3.1 (Li and Dewey, 2011) was used to quantify the mapped reads. The 
gene abundances were calculated and normalized to the number of reads 
per kb per million reads (RPKM) (Mortazavi et al., 2008). 

There were 60–300 million raw reads produced from high- 
throughput sequencing of four C. nippona tissues respectively. And 
then these reads were pooled to assemble a comprehensive reference 
transcriptome of C. nippona (Table 1). As gill is the first line of osmo-
regulation in oysters, the transcriptome of gill under three different 
salinities (S1, S2, S3) was sequenced additionally. The RNA was pooled 
proportionally from three oysters within each experimental group. A 
total of three samples were used for library construction. The mapping 
ratio against the C. nippona reference transcriptome assembly was 
89.09–91.06% (Supplementary Table 1). The RPKM distribution of three 
samples have similar trends (Supplementary Fig. 1). The Minimum In-
formation about any (x) Sequences (MIxS) information, which is stan-
dard description of sequence data, is given in Table 2. 

2.5. Identification of salinity stress-response genes 

The differentially expressed genes (DEGs) under salinity stress were 
obtained through salinity groups S1, S2 compared with normal salinity 
group S3. R package edgeR v3.2.4 (Robinson et al., 2010) was used to 
adjust the read counts and identify DEGs. The threshold for evaluating 
significance was false discovery rate (FDR) ≤ 0.05 and log2 fold change 
ratio ≥ 2. DEGs were then subjected to enrichment analysis of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways (Kanehisa et al., 
2008), taking FDR ≤ 0.05 as a threshold. 

Through differential expression analysis, 19,253 unigenes were 
identified as DEGs, which been taken as salinity stress-response genes. 
Pathway enrichment analysis identifies significantly enriched metabolic 
pathways or signal transduction pathways in DEGs comparing with the 
whole genome background. KEGG is the major public pathway-related 
database (Kanehisa et al., 2008). Several osmoregulatory related 
terms, such as “neuroactive ligand-receptor interaction”, “calcium 
signaling pathway”, “ECM-receptor interaction” and “taurine and 
hypotaurine metabolism” were observed in S2 vs S3 (Supplementary 
Fig. 2). Those neuroactive ligand-receptors always sense the ambient 
salinity changes as the gills of oysters are in direct contact with the 
outside world (Liu et al., 2018). The osmotransduction signaling path-
ways have well-recognized elements such as an increase in Ca2+, thus 
the calcium signaling pathway and ECM-receptor interaction have 
important roles in salinity-stress sensing and signaling transduction 
(Zhao et al., 2012). Taurine, a non-protein animo acid, is the main 
organic osmolyte for oysters (Zhao et al., 2017). Apart from those 
pathways, “apoptosis” was observed to be significantly differentially 
expressed in S1 vs S3 (Supplementary Fig. 3). Apoptosis is a regulated, 
physiologic cell death used by organisms to eliminate unwanted cells 
(Green and Reed, 1998). It is a cellular defense mechanism for osmo-
conforming mollusks in unwanted conditions (Goedken et al., 2005), 
which reveals C. nippona has little capacity to adapt to 10 psu. And it has 
been suggested that C. nippona is a stenohaline species and has little 
salinity tolerance capacity (Okutani, 2000). 

2.6. Adaptive evolution rates calculation 

All translated protein sequences from five species (C. nippona, 
C. gigas, C. angulata, C. sikamea and C. hongkongensis) were used to 
search for single-copy genes by OrthoFinder (Emms and Kelly, 2015). 
Total of 6559 single-copy genes were shared among five Crassostrea 
species. The number of non-synonymous substitutions per non- 
synonymous site (Ka) and the number of synonymous substitutions 
per synonymous site (Ks) against C. nippona of another four Crassostrea 
species were calculated by KaKs_Calculator v2.0 (Zhang et al., 2006) and 
ParaAT v2.0 (Zhang et al., 2012). 

The salinity stress-response genes have larger Ka and Ka/Ks values 
than the non-response genes (Fig. 1, P value < 10− 16), suggesting that 
these response genes have more nonsynonymous mutation than non- 

Table 1 
Summary of the sequencing and de novo assembly.   

Mantle Visceral 
mass 

Adductor 
muscle 

Gill 

No. raw reads 86,427,524 77,246,768 68,485,094 302,902,344 
No. clean reads 86,021,074 76,933,466 68,105,922 299,919,348 
Q20% after filter 97.93 98.27 98.4 96.63 
No. unigenes 66,353 
GC% of unigenes 38.5793 
N50 length (bp) 2239 
Max length (bp) 30,742 
Average length 

(bp) 
1082 

Min length (bp) 201 
Complete 

BUSCOs (%) 
98  

Table 2 
MIxS information for transcriptome assembly of C. nippona.   

Value 

Investigation type Eukaryote 
Project name Crassostrea nippona transcriptome 
Bioproject accession PRJNA482778 
Organism Crassostrea nippona 
Collection date 20-Jun-2016 
Environment Sea water 
Biome ENVO: 00000316 (intertidal zone) 
Feature ENVO: 00000016 (sea) 
Material ENVO: 00002149 (sea water) 
Geolocation China:Rongcheng 
Development stage Adult 
Sequenced method Illumina HiSeq TM 4000 
Assembly method Trinity software  
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response genes. This phenomenon is noteworthy, which means there is 
indeed evidence showing that the intertidal environment with fluctu-
ated physicochemical factors accelerates the speciation of oyster, which 
was also mentioned in other oyster studies (Guo et al., 2015; Song et al., 
2017, 2019). 

3. Conclusion 

This is the first high-quality transcriptomic resource for Crassostrea 
nippona. Furthermore, the RNA seq data and transcriptome assemblies 
described in this article provide resources of expressed coding genes in 
different tissues and condition of adult C. nippona. Comparative tran-
scriptome analysis in Crassostrea oysters implies that salinity plays an 
important role in adaptive evolution of oysters, which provides a novel 
direction for future analysis of evolutionary history of oysters. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.margen.2020.100805. 

Data availability 

High throughput transcriptomic reads have been deposited in SRA 
database under SRA ID SRR7646736, SRR10482017, SRR10482018, 
SRR10482019, SRR10482020, SRR10482021, SRR10482022. This 
Transcriptome Shotgun Assembly project was been deposited at DDBJ/ 
ENA/GenBank under the accession GGUV00000000. The version 
described in this paper is the second version, GGUV02000000. 
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Fig. 1. Boxplot of Ka, Ks and Ka/Ks values for the salinity 
stress response genes and non-response genes of four Crassos-
trea species against C. nippona. Can, C. angulata; Cho, 
C. hongkongensis; Cgi, C. gigas; Csi, C. sikemea; T, salinity stress- 
response genes; F, non-response genes; Ka, The number of non- 
synonymous substitutions per non-synonymous site; Ks, The 
number of synonymous substitutions per synonymous site. The 
P values of Wilcoxon rank test for Ka and Ka/Ks between 
salinity stress response genes and non-response genes in four 
species are all less than 10− 16.   
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