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The Japanese eel (Anguilla japonica) is a commercially valuable catadromous species widely cultured in East Asia.
However, large-scale artificial propagation remains challenging. Activin B, a dimeric protein belonging to the
transforming growth factor-p (TGF-p) superfamily, plays key roles in vertebrate gonadal development, yet its
function in eel ovarian development has not been characterized. In this study, we cloned the inhbb gene from
Japanese eel, expressed its recombinant Activin B protein, and evaluated its effects on ovarian development
under artificial induction conditions. Adult females induced into vitellogenesis with human chorionic gonado-
tropin (hCG) were administered recombinant Activin B or saline for eight weeks. Integrated analyses combining
serum hormone measurements, transcriptomics, and untargeted metabolomics revealed that Activin B signifi-
cantly elevated estradiol levels and regulated multiple reproductive signaling pathways—including Smad,
MAPK, GnRH, insulin, VEGF, and FoxO—as well as key metabolic processes related to steroid, lipid, and amino
acid metabolism. These findings highlight the endocrine-metabolic coordination of Activin B in ovarian devel-

opment, which could offer a theoretical basis for artificial reproduction in Japanese eel.

1. Introduction

In teleosts, gonadotropins are the primary endocrine regulators of
gonadal development, promoting the proliferation and differentiation of
both somatic and germ cells. In addition to these systemic hormones, a
range of intra-gonadal factors—often members of the transforming
growth factor-p (TGF-p) superfamily—play critical roles in the local
regulation of folliculogenesis, steroidogenesis, and gametogenesis [1].
These locally secreted modulators act in a paracrine or autocrine
manner, orchestrating stage-specific events within the gonads and
ensuring the precise progression of reproductive development [2,3]. The
interplay between endocrine signals and local regulators is therefore
essential for maintaining reproductive competence [4].

Among these local factors, Activin B, a homodimer composed of two
B subunits encoded by the inhbb gene, has emerged as a key regulator of
gonadal function in vertebrates [5,6]. In mammals, Activin B is pre-
dominantly expressed in granulosa cells of the ovary and Sertoli cells of
the testis, where it enhances the expression of follicle-stimulating
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hormone receptor (FSHR), stimulates aromatase activity, and promotes
steroidogenesis and germ cell development via the Smad2/3 signaling
pathway [7-9]. In addition, it also participates in the fine-tuning of the
hypothalamic—pituitary—gonadal (HPG) axis by providing positive
feedback on follicle-stimulating hormone (FSH) synthesis [10,11]. In
teleosts, inhbb exhibits dynamic expression patterns within the gonads,
closely associated with specific stages of oogenesis and spermatogenesis.
[12,13]. In zebrafish (Danio rerio), inhbb is detected in both granulosa
and Sertoli cells, suggesting a conserved role in gametogenesis [14].
Moreover, studies in goldfish (Carassius auratus) further support its
involvement in gonadotropin regulation during reproductive cycles
[15].

The Japanese eel (Anguilla japonica) is a catadromous teleost species
that matures in freshwater but undertakes oceanic migration to spawn.
It is of high economic significance in East Asian aquaculture, especially
in Japan, China, and Korea [16]. However, its complex life cycle pre-
sents major challenges for complete artificial reproduction. Although
hormonal treatment can successfully induce spawning and fertilization,
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it remains far from sufficient to meet the requirements of large-scale
aquaculture. Therefore, investigating intra-ovarian regulatory factors
and their roles in the ovarian development of Japanese eel is of great
importance for achieving fully artificial large-scale propagation and
ultimately meeting the needs of both industry and market.

Given the established roles of Activin B in regulating gonadal
development and steroidogenesis, its potential function in ovarian
development of the Japanese eel warrants investigation. In this study,
we cloned the inhbb gene, expressed recombinant Activin B, and eval-
uated its effects on ovarian development through integrated tran-
scriptomic and metabolomic analyses. Our aim was to elucidate its
biological functions and potential regulatory mechanisms, thereby
providing meaningful theoretical support for artificial reproduction of
the Japanese eel.

2. Materials and methods
2.1. Animals

All the adult female Japanese eels were sourced from an aquaculture
farm in Fujian, China. All animal experiments and sample collection
procedures were performed in accordance with the respective Animal
Research and Ethics Committees of Ocean University of China (Permit
Number: 20141201).

2.2. Gene clone and molecular characterization

According to the genome, the open reading frame (ORF) of inhbb in
Japanese eel, was predicted, and gene-specific primers were designed by
primer premier 5 software (Premier, Canada). To amplify the inhbb gene
sequence of Japanese eel, PCR amplification (Sparkjade, China), product
purification (Vazyme, China), and cloning (Vazyme, China) were per-
formed using commercial kits. All procedures were carried out accord-
ing to the manufacturer's protocols. All primers used in this study are
listed in Table S1.

The signal peptide of Activin B was predicted using the SignalP 6.0
Server  (http://www.cbs.dtu.dk/services/SignalP-6.0/). Multiple
sequence alignment was performed using Clustal X, and phylogenetic
analysis of amino acid sequences was conducted with MEGA 7
employing the neighbor-joining method [17,18]. The molecular weight
and isoelectric point of Activin B were estimated using the ExPASy
Compute pI/MW tool (http://web.expasy.org/compute_pi/).

2.3. Recombinant Activin B prokaryotic expression of Japanese eel

Recombinant Japanese eel Activin B was expressed using the
Escherichia coli Rosetta-gami B (DE3)/pET expression system (Novagen,
Germany). Overlapping primers specific to the inhbb of Japanese eel
coding region were designed for PCR amplification (Table S1). The PCR
product was digested with BamHI and Kpnl, and subsequently cloned
into the N-His-SUMO-pET expression vector. The resulting plasmid was
transformed into E. coli Rosetta-gami B (DE3) competent cells. Expres-
sion of the recombinant protein and subsequent refolding of inclusion
bodies were performed as previously described [19]. The 3D structure of
Activin B in Japanese eel was modeled using SWISS-Model (https://swi
ssmodel.expasy.org/).

2.4. Injection and sample collection

After being temporarily reared in seawater for two weeks, ovarian
development of Japanese eel was induced by intramuscular injection of
human chorionic gonadotropin (hCG; Ningbo Second Hormone Factory,
China) at a dose of 300 IU/kg body weight. On the same time, the
treatment group (n = 6) received weekly intramuscularly injections of
recombinant Japanese eel Activin B, while the control group (n = 6) was
injected with an equal volume of physiological saline. Injections were
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administered once per week for a total of eight weeks, and the water
temperature was maintained at 18-20 °C throughout the experiment. At
the end of the experiment, serum samples were collected to measure
estradiol (E2) levels by using enzyme-linked immunosorbent assay
(ELISA) kits (Runyu, China). Ovarian tissues were sampled for tran-
scriptomic and metabolomic analyses, while fixed ovarian tissues were
sectioned and stained with hematoxylin and eosin (H&E) for histological
observation and imaging with an Olympus bright field light microscope
(Olympus, Japan).

2.5. RNA extraction and transcriptome sequencing

Total RNA from ovarian tissues of both groups was extracted using
SparkZol Reagent (Sparkjade, China). A total of eight RNA samples (n =
4 per group) were selected for transcriptome sequencing, including four
from the recombinant Activin B-treated group (ActB_tisl to ActB_tis4)
and four from the control group (Ctrl tisl to Ctrl_tis4). To ensure
experimental rigor and data accuracy, all experimental samples were
randomly selected. RNA-seq libraries were prepared and sequenced on
the Illumina platform, generating 150 bp paired-end reads (NCBI
Accession: PRINA1305659). After filtering out low-quality reads and
removing adapters, clean data were aligned to the Anguilla japonica
reference genome (PRJNA852364) using HISAT2. Transcript assembly
and expression quantification were carried out with StringTie. Differ-
ential expression analysis was conducted using DESeq2, with signifi-
cance thresholds set at an absolute |logzFoldChange| >1 and an adjusted
pvalue <0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were subsequently
performed to explore the functional categories and signaling pathways
associated with the differentially expressed genes (DEGs).

2.6. Metabolite extraction and untargeted LC-MS analysis

A total of twelve ovarian tissue samples (n = 6 per group) from the
Activin B-treated (ActB_meta_ T1-T6) and control (ActB_meta_C1-C6)
groups were subjected to untargeted metabolomic profiling using liquid
chromatography-tandem mass spectrometry (LC-MS/MS). Raw spectral
data were processed with Compound Discoverer, which included peak
detection, alignment, retention time calibration, and data normaliza-
tion. Metabolite annotation was achieved by matching spectral features
against both public (e.g., KEGG, HMDB, LIPID MAPS) and in-house
databases. Differential metabolites (DMs) were identified using the
following thresholds: variable importance in projection (VIP) > 1.0, fold
change (FC) > 1.2 or < 0.833, and pvalue <0.05. To assess metabolic
variation between groups, multivariate analyses such as principal
component analysis (PCA) and partial least squares discriminant anal-
ysis (PLS-DA) were performed. KEGG pathway enrichment analysis was
subsequently conducted to reveal the biological relevance of the iden-
tified metabolites.

2.7. Transcriptome-metabolome integration

To investigate the interplay between gene expression and metabolite
alterations during ovarian development, an integrated analysis
combining transcriptomic and metabolomic datasets was conducted.
Pearson correlation coefficients between DEGs and DMs were calculated
using the stats package in R (v4.0.3). Gene-metabolite pairs with a
pvalue <0.05 were considered significantly correlated. To enhance
interpretability, the top 50 DEGs and top 50 DMs (ranked by ascending
pvalue) were selected for visualization. A correlation heatmap was
generated to display the interaction patterns between these selected
genes and metabolites. All DEGs and DMs were jointly analyzed for
pathway enrichment using the KEGG database via the MetaboAnalyst
platform (https://www.metaboanalyst.ca/). Shared KEGG pathways
between the transcriptomic and metabolomic datasets were identified
by overlapping the pathway enrichment results from both analyses,
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which enabled the identification of key biochemical and signaling
pathways jointly regulated by DEGs and DMs.

2.8. Statistical analysis

All data were expressed as the mean values + SEM. Data analyses
were performed by t-test, and significance was considered at P < 0.05.
All statistics were tested using SPSS 21.0 statistical software (SPSS,
USA).

3. Results

3.1. Molecular characterization and evolutionary analysis of inhbb in
Japanese eel

The cloning results revealed that the full-length cDNA sequence of
inhbb (GenBank accession number: PX060996) was 1182 base pairs (bp),
which encoded a protein of 393 amino acids (aa). A signal peptide
comprising the first 20 aa was predicted at the N-terminus, as shown in
Fig. 1A, B.

The phylogenetic tree showed that Activin B from teleosts and other
vertebrates were grouped into two distinct clades. Within the teleost
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lineage, Anguilla japonica shared the closest evolutionary relationship
with Anguilla anguilla, followed by Oncorhynchus mykiss, Larimichthys
crocea, and Oreochromis niloticus (Fig. 1C). As illustrated in Fig. 1D,
sequence alignment revealed the presence of a highly conserved mature
peptide region in the Activin B across these species, indicating strong
evolutionary conservation of this functional domain.

3.2. Construction and expression of recombinant Activin B of Japanese
eel

The mature peptide region of Japanese eel Activin B was inserted
into the N-His-SUMO-pET expression vector to construct a recombinant
protein expression plasmid (Fig. S1). Prokaryotic expression followed by
inclusion body refolding yielded a recombinant protein with an
approximate molecular weight of 26.4 kDa (Fig. 2). The predicted three-
dimensional structure of the protein is shown in Fig. S1.

3.3. Activin B enhances E2 production in Japanese eel

Ovarian tissues from all experimental fish were subjected to H&E
staining, and two samples from each group were randomly selected for
presentation. Histological observations showed that the ovaries in both

20aa 258aa - 115aa
<
Signal peptide Precursor peptide Mature peptide
< Activin B

Signal peptide oo

Anguill japonicu
“Anguilla Anguila
Daniorerio
Oncorhynchus mykiss

3

hrom
Homo sapiens

T—

Gallus gallus

Anguillajaponica 47 5|
Anguila Avguilla 47
Danio rerio 52

Oncorhynchus mykiss 55 80
Oreochromis nilotcus. 52
Homo sapiens 6

Mo musculus 7
Gallusgallus 52 o

Anguillajaponics 126
Anguill Anguilla 126
Danioreria 130

Gallus gallas 131

Anguilejaponica 206
x

Gallusgallus 208

B2 pi3 pla_ BIs_ BI6 as a6 pi7
L8 = = 20

Anguillejoponica 286 |
Anguilla Anguilla

Gallus gallas

Mature peptide

O VOB 5 141 Y FODE YN TVKRDVPNMIVEECGCA
inguills Anguitla 365 7 NETHINEY =
Danioreria EPTQE S s ML Y FODEYNIVKRDVPNMIVIE
Oncorhynchus mokiss 368 7!

pi EQEY s ML Y FODEYNIVKRDVPNMIVEE
Mo musculus ELEQE s My FoDEYNIVERDVENMIVEE
Gallus gallay ECY s v roo e vkrovemavBlEccca)

Fig. 1. (A) Nucleotide and amino acid sequences of inhbb in Japanese eel (Gray: Signal peptide; Yellow: Mature peptide; Blue: Cysteine.). (B) Structural composition
of Activin B in Japanese eel. (C) A phylogenetic tree was constructed using the neighbor-joining method in Japanese eel and other species. Data were resampled with
1000 bootstrap replicates. Accession numbers: Cyprinus carpio (AOW71516.1), Danio rerio (NP_571143.2), Megalobrama amblycephala (XP_048049468.1), Salmo salar
(XP_014029178.1), Oncorhynchus keta (XP_035605606.1), Anguilla anguilla (XP_035264053.1), Oncorhynchus mykiss (XP_021427073.2), Larimichthys crocea
(XP_010744581.1), Oreochromis niloticus (XP_019207789.1), Gallus gallus (NP_990537.2), Homo sapiens (KAI4036073.1), Mus musculus (NP_032407.1), Oryctolagus
cuniculus (XP_008256688.1). (D) The sequence alignment of Activin B in Japanese eel (Anguilla japonica), European eel (Anguilla anguilla), zebrafish (Danio rerio),
rainbow trout (oncorhynchus mykiss), Nile tilapia (Oreochromis niloticus), human (Homo sapiens), mouse (Mus musculus) and chiken (Gallus gallus).
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Fig. 2. SDS-PAGE analysis of recombinant Activin B in Japanese eel (M:
Marker; lane 1: Total protein in the E. coli before induction; lane 2: Total protein
in the E. coli after induction; lane 3: Protein in the precipitate after induction;
lane 4: Protein in the supernatant after induction; lane 5-7: Recombinant
Activin B after washing and refolding (26.4 kDa)).

groups had entered the vitellogenic stage, but there was no obvious
difference between them (Fig. 3A). Measurement of serum E2 levels
revealed that the treatment group exhibited significantly higher E2
concentrations compared to the control group (p < 0.001; Fig. 3B),
which suggests that Activin B administration promotes E2 production
during the ovarian developmental processes in Japanese eel.

3.4. Transcriptomic analysis reveals Activin B-mediated regulation of
ovarian development in Japanese eel

To investigate the molecular mechanisms by which Activin B regu-
lates ovarian development, transcriptomic analysis was performed on
ovarian samples from both the Activin B-treated and control groups.
High-throughput sequencing generated a total of 382,137,778 raw
reads. After quality control and filtering, 368,707,628 clean reads were
obtained. The average Q20 and Q30 scores were 98.85 % and 96.81 %,
respectively, indicating high sequencing quality (Table S2).

Principal component analysis (PCA) revealed a clear separation be-
tween the Activin B-treated and control groups, indicating good classi-
fication and consistency among all eight biological replicates (Fig. 4A).
A visual overview of DEGs is shown in Fig. 4B. As illustrated in Fig. 4C, a
total of 1023 DEGs were identified, including 612 upregulated and 411
downregulated genes in the treatment group compared to the control.

To further explore the biological significance of these DEGs, GO and
KEGG enrichment analyses were performed. Functional enrichment
analyses revealed that the DEGs were broadly involved in processes
related to signal transduction, transcriptional regulation, protein
modification and transport, and cell cycle progression. At the cellular
component level, many DEGs were associated with intracellular
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structures such as membranes, cytoskeleton, and organelles. In terms of
molecular functions, enrichment was observed in categories related to
enzyme activity, protein binding, and kinase-mediated phosphorylation,
reflecting widespread regulatory potential (Fig. 4D). Consistently, KEGG
pathway analysis highlighted significant enrichment in pathways gov-
erning protein processing, intracellular transport, cytoskeletal dy-
namics, and cell-cell interactions, along with several classical signaling
cascades including MAPK, mTOR, and FoxO. Furthermore, metabolic
pathways related to amino acids, lipids, and carbohydrates were also
enriched, suggesting that Activin B regulates ovarian development
through a coordinated network of signaling pathways and metabolic
processes (Fig. 4E). As shown in Fig. 4F, the Sankey bubble plot revealed
that DEGs were enriched in multiple signaling pathways closely related
to ovarian development, with representative genes mapped to each
pathway. Above results indicate that Activin B regulates ovarian
development at the transcriptional level by modulating multiple bio-
logical processes and signaling pathways.

3.5. Untargeted metabolomic profiling reveals Activin B-regulated
changes in ovarian metabolism

To further investigate the physiological changes associated with
Activin B regulation of ovarian development, untargeted metabolomic
analysis was performed on ovarian samples from both groups. PLS-DA
revealed a distinct separation between the Activin B-treated and con-
trol groups, indicating differing metabolic states between the two groups
(Fig. 5A). Among all the identified metabolites, the top three classes
were Lipids and lipid-like molecules, Organic acids and derivatives, and
Organoheterocyclic compounds, which accounted for 28.76 %, 18.59 %,
and 18.43 % of the total metabolites, respectively (Fig. 5B).

A total of 553 DMs were identified between the two groups
(Table S3), including 261 upregulated and 292 downregulated com-
pounds (Fig. 5C, D). Among these, several estrogen-related steroids were
detected, such as 19-Nortestosterone, Quinestrol, and 17-[(Benzyla-
mino)methyl] estra-1,3,5(10)-triene-3,17p-diol, suggesting a potential
link between Activin B treatment and steroid hormone metabolism.
KEGG enrichment analysis revealed that the DMs were involved in pu-
rine, glycerophospholipid metabolism, biosynthesis of unsaturated fatty
acids and fatty acid biosynthesis (Fig. S5E). These pathways are closely
associated with cellular energy balance, membrane remodeling, and
steroid hormone biosynthesis, all of which are essential for follicular
development and ovarian function.

3.6. Integrated transcriptomic and metabolomic analysis reveals
coordinated pathways regulated by Activin B

To elucidate the correlation between DEGs and DMs during Activin
B-induced ovarian development, Pearson correlation analysis was per-
formed. As shown in the correlation heatmap (Fig. 6A), several DEGs
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Fig. 3. (A) Representative ovarian sections from recombinant Activin B-treated and control groups stained with H&E. a-d, scale bar = 100 um; a’-d’ (represent
magnified views of the corresponding regions in panels a-d), scale bar = 50 pm. (B) Comparison of estradiol (E2) levels between groups. Values represent mean +

SEM. p < 0.05.
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Fig. 4. (A) PCA of the eight libraries in the recombinant Activin B-treated and control groups. (B) The expression values of the DEGs in the recombinant Activin B-
treated and control groups are presented in a heat map (red: upregulated, blue: downregulated). (C) Volcano plot of DEGs between recombinant Activin B-treated and
control groups (red: upregulated, green: downregulated). (D) GO terms enriched among DEGs between recombinant Activin B-treated and control groups. (E) KEGG

pathways enriched among DEGs between recombinant Activin B-treated and control groups. (F) DEGs in several reproduction-related signaling pathways.

exhibited significant positive or negative correlations with specific DMs,
indicating potential regulatory relationships between gene expression
and metabolic alterations. In addition, transcriptomic and metabolomic
datasets were integrated based on shared KEGG pathways. Joint
enrichment analysis identified several commonly affected pathways,
including biosynthesis of unsaturated fatty acids, glycerophospholipid
metabolism, GnRH signaling pathway, fatty acid biosynthesis and
degradation, and biosynthesis of amino acids (Fig. 6B). These shared
pathways highlight coordinated regulation at both the transcriptional
and metabolic levels during Activin B-regulated ovarian development.

4. Discussion

An increasing number of studies have demonstrated that Activin B
plays a pivotal role in ovarian development in teleosts [13,20,21]. In the
present study, we preliminarily investigated the biological function of
Activin B during ovarian development in Japanese eel. The ORF of
Japanese eel Activin B is 1182 bp in length and encodes a protein of 393
aa, consisting of a 20-amino-acid signal peptide, a 258-amino-acid
propeptide, and a 115-amino-acid mature peptide. Phylogenetic anal-
ysis and multiple sequence alignment revealed that Activin B is evolu-
tionarily conserved across species, consistent with known evolutionary
relationships. The Activin B protein of Japanese eel exhibits typical
structural features of the TGF-f superfamily, including a distinct signal
peptide, a relatively conserved mature region, and a characteristic
pattern of cysteine residues. The mature peptide region contains

conserved cysteine residues that are critical for the formation of intra-
chain and interchain disulfide bonds, which stabilize the dimeric
structure of the bioactive protein. Additionally, the conserved C-termi-
nal region of the mature domain is responsible for interaction with type
II Activin receptors, triggering downstream Smad2/3 signaling cascades
[22-24]. Together, these structural features ensure that Activin B can
function as a potent paracrine or autocrine regulator during ovarian
development.

Artificial reproduction of Japanese eel remains a major challenge in
aquaculture. Currently, ovarian development in captive female eels is
primarily induced by repeated injections of pituitary extract. In this
study, we investigated the potential biological function of recombinant
Activin B in ovarian development by co-injecting it alongside a gonad-
otropin analog in adult females. Our aim was to investigate the regu-
latory role of Activin B in ovarian development of the Japanese eel and
to elucidate its potential mechanisms, with the expectation of providing
feasible insights to support artificial reproduction of this species.

Serum hormone measurements showed that E2 concentrations were
significantly higher in the Activin B-treated group than in the controls,
indicating that Activin B can promote steroid hormone production to
some extent. Similar findings have been reported in zebrafish, where
Activin has been shown to regulate steroidogenesis and follicular
development, supporting the conclusions of our study [21,25]. Never-
theless, the absence of clear morphological differences in follicular
development between treated and control groups suggests that Activin B
does not directly drive vitellogenin uptake by oocytes.
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Fig. 6. (A) Correlation heatmap showing Pearson r values between selected DEGs (top 50) and DMs (top 50). Blue-red gradient indicates correlation strength;
asterisks indicate statistical significance (p < 0.05). (B) Joint KEGG pathway enrichment analysis of DEGs and DMs.

To investigate the molecular mechanisms by which Activin B regu-
lates ovarian development in Japanese eel, integrative bioinformatic
analyses were conducted at both the transcriptomic and metabolomic

levels. GO and KEGG enrichment analyses revealed that DEGs were
significantly enriched in multiple signaling pathways related to Activin
signaling and ovarian development, suggesting that Activin B may exert
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its regulatory effects through coordinated activation of reproductive and
hormone-related gene networks. GO enrichment analysis revealed sig-
nificant involvement of signal transduction-related terms, including
protein kinase activity, protein phosphorylation, and hormone binding.
These findings indicate that Activin B likely initiates downstream
signaling cascades to regulate ovarian development, which possibly
including the cooperative interactions with parallel signaling cascades.
In vertebrates, Activin B primarily signals through the Smad2/3-
dependent TGF-p pathway, which involves binding to type II and type
I Activin receptors and subsequent phosphorylation of Smad proteins
[22]. These activated Smads form complexes with Smad4 and trans-
locate to the nucleus, where they regulate the transcription of target
genes involved in steroidogenesis and follicular development [26]. In
addition to the canonical Smad-dependent signaling pathway, non-
canonical pathways such as MAPK, PI3K-Akt, and ERK may also be
activated concurrently or synergistically with Smad signaling.
Increasing evidence suggests that members of the TGF-p superfamily,
including various regulatory ligands, can exert their biological effects
through the activation of multiple signaling cascades in parallel
[27-29]. This has been demonstrated in studies of some teleosts, where
members of the TGF-§ family have been shown to activate both Smad-
dependent and Smad-independent pathways to regulate complex phys-
iological processes [30,31]. Such a mechanism may also allow Activin B
to fine-tune ovarian development through the integration of diverse
intracellular signals. In our study, the MAPK signaling pathway was
significantly enriched in the KEGG analysis, suggesting that Activin B
may activate both Smad-dependent and MAPK-mediated signaling
pathways to coordinately regulate ovarian development in Japanese eel.
Above results indicate that Activin B functions through a combination of
canonical and non-canonical mechanisms to fine-tune gene expression
and physiological responses during ovarian development in Japanese
eel.

A complex vascular network is essential for ovarian development,
ensuring the delivery of oxygen, hormones, and nutrients, as well as the
removal of metabolic waste products [32-34]. In this study, GO func-
tional analysis revealed significant enrichment of the angiogenesis,
suggesting that Activin B may regulate blood vessel formation during the
ovarian development in Japanese eel. Such vascular remodeling could
facilitate adequate nutrient supply and metabolic exchange, thereby
regulating oocyte growth at this critical stage of development. Similar
observations have been reported in other vertebrates, where members of
the TGF-f superfamily, including Activins, have been shown to stimulate
endothelial cell proliferation, migration, and capillary-like structure
formation, thereby enhancing angiogenesis within reproductive tissues
[35,36]. These parallels support the hypothesis that, in teleosts, Activin
B may exert a conserved regulated-angiogenic function to optimize the
microenvironment for oocyte development.

In the present study, KEGG enrichment analysis revealed significant
representation of the FoxO signaling pathway among the DEGs, sug-
gesting its potential involvement in Activin B-mediated ovarian devel-
opment in Japanese eel. Members of the Fox family, particularly FoxL2
and FoxO transcription factors, are known to play pivotal roles in
regulating folliculogenesis, steroidogenesis, and oocyte maturation in
vertebrates [37,38]. The enrichment of the FoxO signaling pathway in
our data implies that Activin B may exert part of its effects through
transcriptional regulation mediated by FoxO factors. Such interactions
may fine-tune steroid hormone biosynthesis, maintain follicle health,
and coordinate oocyte growth during ovarian development.

In addition to the pathways described above, several DEGs were also
enriched in other signaling pathways that are closely linked to ovarian
development, including the GnRH signaling pathway, insulin signaling
pathway, VEGF signaling pathway, progesterone-mediated oocyte
maturation, and ATP-binding cassette (ABC) transporters. GnRH
signaling acts at the top of the reproductive endocrine hierarchy, driving
gonadotropin release from the pituitary and thereby influencing
downstream processes such as steroid hormone synthesis and
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gametogenesis [39]. The Insulin signaling, often through cross-talk with
PI3K/Akt and MAPK pathways, supports follicle growth, granulosa cell
proliferation, and the regulation of steroid production [40,41], while
VEGF signaling is indispensable for the extensive angiogenesis that ac-
companies ovarian development, ensuring that developing oocytes
receive adequate oxygen, nutrients, and hormonal cues [42,43].
Meanwhile, ABC transporters, are involved in the transmembrane
movement of lipids, cholesterol, and other substrates, potentially
influencing the supply of essential molecules for steroid biosynthesis and
follicular growth [44]. The enrichment of these pathways in our data
suggests that Activin B may regulate Japanese eel ovarian development
via a complex, multi-pathway network that integrates endocrine regu-
lation, local signaling, nutrient transport, and angiogenesis.

Notably, both the metabolomic analysis and the integrated tran-
scriptome-metabolome analysis also revealed enrichment of the GnRH
and FoxO signaling pathways, providing further support for the tran-
scriptomic findings. The recurrence of these pathways across different
omics layers reinforces their potential importance in mediating the ef-
fects of Activin B on ovarian development. Furthermore, the untargeted
metabolomic analysis revealed pronounced alterations in lipid and
amino acid metabolism, with notable changes in pathways related to
steroid hormone metabolites, energy metabolism, and the biosynthesis
and catabolism of several amino acids. These metabolic shifts align well
with integrated multi-omics findings, offering additional evidence that
Activin B may influence ovarian development in Japanese eel through
multiple, interconnected processes that encompass endocrine regula-
tion, nutrient metabolism, and energy homeostasis. Taken together, the
integrated transcriptomic and metabolomic analyses provide compre-
hensive insights into the molecular mechanisms underlying Activin
B-regulated ovarian development in Japanese eel. Transcriptome
profiling revealed that Activin B regulates the expression of genes
involved in steroid biosynthesis, oocyte development, and hormone
signaling pathways. In parallel, metabolomic analysis identified signif-
icant alterations in metabolites associated with lipid metabolism,
nucleotide turnover, and steroid hormone pathways, including several
estrogen-like compounds. The coordinated enrichment of key biological
processes—such as steroidogenesis, purine metabolism, and unsaturated
fatty acid biosynthesis—highlights the dual regulatory role of Activin B
at both the transcriptional and metabolic levels. These findings suggest
that Activin B regulates ovarian development not only by activating
hormone-related gene networks but also by inducing metabolic
reprogramming to meet the energetic and biosynthetic demands.

The present study investigated the potential role and molecular
mechanisms of Activin B in ovarian development of the Japanese eel
primarily through intramuscular injection, combined with tran-
scriptomic and metabolomic analyses. However, key production-related
parameters such as fertilization rate, hatching rate, and larval survival
were not assessed. In future studies, we aim to improve the experimental
design by incorporating these reproductive performance indicators,
thereby providing stronger evidence and more practical support for the
artificial propagation of Japanese eel.

5. Conclusion

This study provides new insights into the role of Activin B in ovarian
development of the Japanese eel. Previous evidence from mammals and
teleosts has shown that Activin B is a critical regulator of gonadal
function through endocrine and intra-gonadal pathways. Here, we
cloned and characterized the inhbb gene, expressed recombinant Activin
B protein, and demonstrated its biological function in vivo. Functional
analyses revealed that Activin B significantly increased serum estradiol
levels and modulated transcriptional and metabolic profiles. Integrated
transcriptomic and metabolomic analyses further indicated that Activin
B exerts its effects through both canonical (Smad) and non-canonical
(MAPK) cascades, together with reproductive signaling pathways such
as GnRH, insulin, and VEGF. These networks converge on lipid
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metabolism, amino acid metabolism, and steroidogenesis, thereby
regulating ovarian development. Collectively, this study provides pre-
liminary insights into the potential roles and mechanisms of Activin B in
regulating ovarian development in Japanese eel, offering a theoretical
basis for artificial reproduction.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ijbiomac.2025.148149.
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