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A B S T R A C T

Spotted sea bass (Lateolabrax maculatus), a commercially vital aquaculture species in China, faces critical chal
lenges including the degeneration of genetic characteristics and long-term generation interval which hinder 
sustainable industry development. Genomic selection (GS) presents a promising strategy to accelerate genetic 
improvement of economically crucial traits. However, the absence of cost-effective, high-throughput genotyping 
tools has impeded GS implementation in this species. To address this gap, in this study, the first 45 K liquid SNP 
array for spotted sea bass, named as “LuXin-I", was developed using genotyping by target sequencing (GBTS) 
technology. Leveraging high-confidence SNP dataset identified from 1107 WGS data exhibiting the highest ge
netic diversity, 41,604 genome-wide background SNPs with uniform genomic distribution and appropriate MAF 
ranges, and 3393 functional SNPs associated with economically important traits, selection signatures, and high 
impact genomic regions were successfully integrated in LuXin-I SNP array and used for probe design. A total of 
130,563 mSNPs within 44,997 target genomic segments were captured through genotyping evaluation for 218 
test samples. The SNP array demonstrated robust genotyping performance, with exceptional genotype call rates 
of 99.48 % and 99.52 % for core SNPs and mSNPs, and high concordance with GC and R2 values greater than 94 
%. Moreover, only 1.05 % and 0.40 % of core SNPs and mSNPs had a genotype missing rate greater than 0.1, 
confirming its accuracy and reliability for genotyping spotted sea bass samples. In addition, LuXin-I SNP array 
demonstrated identical performance in resolving population structure compared to WGS data while reduced 
GWAS resolution for trait-associated SNPs due to marker density limitations. Notably, the SNP array achieved 
comparable heritability (h2) estimates ranging from 0.534 to 0.592 and superior genomic prediction accuracy for 
growth traits comparable to WGS data. In summary, LuXin-I SNP array will provide a cost-effective and reliable 
genotyping platform, enabling large-scale genotyping for spotted sea bass and advancing genetic improvement.

1. Introduction

Spotted sea bass (Lateolabrax maculatus) has emerged as a commer
cially vital mariculture fish in China, with annual production surpassing 
200,000 tons in recent years (Li et al., 2025a). Renowned for its superior 
nutritional profile, delicate flavor, and cultural importance, this species 
has gained substantial popularity in both domestic and international 
markets. However, the lack of high-quality strains or varieties has 

consistently hindered the development and expansion of the spotted sea 
bass industry due to various environmental threats, disease invasions 
and germplasm deterioration caused by frequent inbreeding practices 
(Zhang et al., 2024). Genomic selection (GS) has revolutionized modern 
breeding programs by offering enhanced prediction accuracy, reduced 
inbreeding rates, accelerated genetic gains, and shortened generational 
intervals, which has contributed to remarkable genetic improvement for 
plant, livestock and aquaculture species (Crossa et al., 2017; Georges 
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et al., 2019; Zhou et al., 2024b). Our team has committed to accelerating 
genetic improvement for economically important traits of spotted sea 
bass and has achieved several genetic advancements in the application 
of GS for growth (Zhang et al., 2023a), alkalinity tolerance (Zhang et al., 
2025a), heat tolerance (Liu et al., 2025) and swimming performance 
traits (Li et al., 2025a). Through extensive GS modeling, we found that 
an appropriate number of informative single nucleotide polymorphism 
(SNP) markers is sufficient to achieve high predictive accuracy, indi
cating that whole-genome resequencing (WGS) generates excessive 
redundant markers (millions of SNPs) that provide diminishing returns 
for prediction accuracy. Moreover, genotyping large-scale individuals 
using WGS becomes economically prohibitive in commercial breeding 
operations. Therefore, developing high-throughput and cost-effective 
genotyping tools were urgent need for accelerating genetic progress of 
spotted sea bass through GS breeding.

While both solid SNP arrays and reduced-representation genome 
sequencing (RRGS) serve as cost-effective genotyping solutions for 
population-level studies (Zhou et al., 2020), their technical architectures 
present distinct trade-offs that require careful consideration in specific 
research methods and goals (Kockum et al., 2023). Compared to enzyme 
digestion bias and uneven coverage of genomic regions of RRGS 
methods, solid SNP arrays are favored genotyping tools for their feasi
bility to be customized to target specific SNPs, high genotyping accu
racy, robustness and straightforward use (Liu et al., 2023; Robledo et al., 
2018; Zhou et al., 2020). These merits have driven successful array 
development for high-quality aquaculture species including common 
carp (Cyprinus carpio) (Xu et al., 2014), Nile tilapia (Oreochromis niloti
cus) (Yáñez et al., 2020), channel catfish (Ictalurus punctatus), blue cat
fish (I. furcatus) (Liu et al., 2014; Zeng et al., 2017), Atlantic salmon 
(Salmo salar) (Houston et al., 2014), large yellow croaker (Larimichthys 
crocea) (Zhou et al., 2020) and Japanese flounder (Paralichthys olivaceus) 
(Zhou et al., 2021). Efficient and accurate high-throughput genotyping 
capabilities using solid arrays have revolutionized genetic analyses in 
aquaculture, enabling large-scale genome wide association study 
(GWAS) and accelerating genetic improvement through GS breeding 
programs (Chen et al., 2024; Zhou et al., 2024b). Despite these ad
vancements, the high customization cost, expensive equipment and low 
flexibility hinder the widespread development of solid arrays for aqua
culture fishes (Rasheed et al., 2017). Additionally, collected samples 
need to be sent to foreign sequencing facilities for genotyping using solid 
arrays, which also increases financial and time costs. These constraints 
collectively underscore the urgent need for developing affordable, 
locally adaptable SNP array solutions tailored to aquaculture industries.

The emergence of genotyping by target sequencing (GBTS) tech
nology represents a novel genotyping strategy that effectively integrates 
the complementary advantages of solid SNP arrays and RRGS ap
proaches. This approach firstly capture and hybridize targeted genomic 
regions using custom probes, followed by high-depth sequencing to 
accurately identify and genotype SNPs after library construction (Guo 
et al., 2019; Guo et al., 2021). Therefore, GBTS, also known as liquid 
SNP array, combines the advantages of customizability, high genotyping 
accuracy and repeatability of solid arrays with the flexible design and 
low genotyping cost of RRGS approaches (Liu et al., 2023; Wang et al., 
2023). Moreover, due to reduced design costs and short turnaround 
times, new and non-informative genetic variants can be constantly 
added to or removed from liquid SNP arrays whenever necessary, 
conferring liquid SNP arrays with huge potential for applications in 
breeding research (Li et al., 2025b). Recently, liquid SNP arrays have 
gradually become mainstream in array research and widely applied in 
species such as maize (Guo et al., 2019), wheat (Xiang et al., 2023), 
chicken (Liu et al., 2023), pigs (Zhang et al., 2025b) and cattle (Chen 
et al., 2024). For aquaculture fishes, a 20 K DongXin I liquid SNP array 
was developed for vibriosis-resistant germplasm of the leopard coral 
grouer (Plectropomus leopardus) (Zhou et al., 2024a), a 55 K NingXin-III 
liquid SNP array was developed based on the 55 K NingXin-II solid SNP 
array for large yellow croaker (Wang et al., 2023), a 20 K liquid SNP 

were developed to reveals QTLs for disease resistance in tiger pufferfish 
(Takifugu rubripes) (Li et al., 2025b). In addition, several liquid SNPs 
were also developed for other aquaculture species, including Pacific 
abalone (Haliotis discus hannai) (Liu et al., 2022), and estuarine oyster 
(Crassostrea ariakensis) (Zhang et al., 2023b), mud crab (Scylla para
mamosain) (Ye et al., 2025), and Pacific white shrimp (Litopeneaus 
vannamei) (Yu et al., 2020). This expanding applications of GBTS in 
aquatic species underscores the critical need for developing a liquid SNP 
array for spotted sea bass. Such a platform would not only overcome the 
economic constraints of traditional WGS genotype but also enable dy
namic adaptation to evolving breeding objectives, ultimately acceler
ating genetic gain in this commercially vital species.

Leveraging GBTS technology, we developed “LuXin-I", a 45 K liquid 
SNP array tailored for spotted sea bass. This array integrates numerous 
background SNPs that are evenly distributed across the genome, as well 
as several functional SNPs associated with economically important 
traits, selection signatures, and high impact genomic regions. Further
more, the genotyping performance of LuXin-I was first validated using 
218 test samples using comprehensive criteria, and the application 
performance for genetic improvement was systematically compared to 
WGS data through population structure analysis, GWAS, genetic 
parameter estimations, and GP. Our study would provide an open- 
access, cost-effective and reliable tool for large-scale genotyping for 
spotted sea bass, facilitating its genetic research and GS application.

2. Materials and methods

2.1. Data description and SNP identification

To comprehensively capture the genetic diversity of spotted sea bass, 
we implemented a dual-strategy sampling approach. First, we selected 
100 representative wild germplasm samples collected from 14 sites 
along the Chinese coastline (100data). These samples exhibited different 
genetic structures and clustered into three highly differentiated pop
ulations including Bohai Gulf (BH) and Beibu Gulf (BB) and intermediate 
(IM) populations. Among these, the BH and BB populations show sig
nificant phenotypic divergence in traits such as low-temperature toler
ance and growth performance (Chen et al., 2023). Second, to ensure the 
broad capabilities of SNP arrays in genotyping diverse wild and farmed 
populations, we selected a total of 1007 WGS data including 301 wild 
and 706 farmed individuals. Specifically, 1007 samples were sourced 
from three local fish farms in Dongying (DY), Tangshan (TS), and Yantai 
(YT), China. This included 301 one-year-old fish from DY farm, collected 
from natural populations in the Yellow Sea and Bohai Sea (DY wild), 213 
five-year-old broodstock from TS farm (TS breeding), both showing 
growth differentiation at the individual level. And 493 two-year-old fish 
from YT farm were derived from northern (fast growth strain) and 
southern farmed populations, which exhibiting phenotypic differentia
tion including growth and heat tolerance trait. Detailed sequencing in
formation is described in Table S1, and variant calling were conducted 
using HaplotypeCaller procedure of GATK (v4.5.0.0) (McKenna et al., 
2010). SNP refinement was conducted using Plink (v1.90) based on the 
following criteria: minor allele frequency (maf) > 0.05, genotyping call 
rate (geno) > 0.95, the P-value of the Hardy-Weinberg equilibrium test 
(hwe) > 0.01 (Purcell et al., 2007). Furthermore, SNPs with a hetero
zygosity rate above 0.5 and non-biallelic SNPs were excluded using 
BCFtools (v1.9) (Genovese et al., 2024) to establish a high-confidence 
SNP dataset for subsequent analyses and marker selection of SNP array.

2.2. Population structure and genetic diversity analysis

High-confidence SNP were subjected to population structure and 
genetic diversity analysis. Principal component analysis (PCA) was 
conducted using Plink (Purcell et al., 2007), with the first two principal 
components (PC1 and PC2) visualized to reveal genetic clustering. 
Population structure analysis was inferred using Admixture (v1.3.0) 
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(Alexander et al., 2009) with K values ranging from 1 to 5, allowing the 
software to infer population stratification based on the optimal K values. 
Furthermore, we calculated within-population nucleotide diversity (π) 
for wild, breeding and farmed population. Pairwise fixation indices (Fst) 
were computed to calculate the level of genetic differentiation between 
each pair of populations using VCFtools (v0.1.16) with a 10-kb sliding 
window and a 5-kb step size (Danecek et al., 2011).

2.3. Functional SNPs selection for LuXin-I SNP array

2.3.1. Functional SNPs identification using genome-wide association study 
(GWAS)

Functional SNPs underlying economically important traits are 
essential for the accuracy and efficiency of calculating genomic esti
mated breeding values (GEBV). To achieve this, we strategically prior
itized several GWAS-informative SNPs associated with economic traits 
and incorporated them into the array development. In detail, our team 
has conducted GWAS using 514 samples (DY and TS individuals) for 
growth traits (Zhang et al., 2023a), 287 DY samples for alkalinity 
tolerance trait (Zhang et al., 2025a), 493 YT samples for heat tolerance 
trait (Liu et al., 2025), 446 samples for swimming performance trait (Li 
et al., 2025a), 514 samples (367 males and 147 females) for sex deter
mination (unpublished data), and 450 samples for disease resistance to 
Nocardia seriolae (unpublished data). Detailed phenotype differentiation 
data is described in Table S2 and mixed linear model (MLM) incorpo
rating population structure and genetic relatedness was conducted to 
identify functional SNPs associated with these traits using GEMMA 
software (v0.98.5) (Zhou and Stephens, 2012). Given heterogeneous 
genetic architecture across traits, there were no standardized criteria for 
determining the number of functional SNPs to be selected. For example, 
for polygenic traits including growth, alkalinity tolerance, heat toler
ance and swimming performance, which are regulated by numerous 
micro-effect SNPs rather than a few major QTLs (Li et al., 2025a; Liu 
et al., 2025; Zhang et al., 2023a), we initially selected approximately 
500 SNPs with the highest ranked P-values based on the GWAS results. 
However, for traits like sex determination and disease resistance, where 
significant major QTLs were detected and most functional SNPs were 
within 1000-bp distance (unpublished data), we modestly reduced the 
number of selected SNPs to around 200. All GWAS-informative SNPs 
were merged, and duplicates were removed, retaining only one SNP 
within every 300-bp window. We set a suggestive significance threshold 
of P-value <0.0001 to select SNPs for SNP array design.

2.3.2. Functional SNPs identification using selective sweep analysis
Selection signatures are genotypic markers shaped during evolu

tionary adaptation under natural or artificial selection. Population 
structure analysis of 1107 spotted sea bass samples revealed two major 
genetic groups, primarily driven by differentiation between northern 
and southern farmed populations. To ensure the effectiveness of LuXin-I 
SNP array in germplasm resource management and population structure 
identification, we conducted selective sweep analyses, including fixa
tion index (Fst) and nucleotide diversity (θπ) using VCFtools (v0.1.13) 
(Danecek et al., 2011), to identify positively selected regions focused on 
two main comparisons. First, since the wild and breeding populations 
formed a single genetic cluster that overlapped with partially fast 
growth strain, we aimed to identify genomic regions underlying the 
divergence between these two major genetic groups (northern vs. 
southern farmed populations). Second, as the northern farmed popula
tion represents the fast growth strain, we specifically compared it 
against wild populations to detect artificial selection signals potentially 
related to growth performance. Candidate regions were defined as those 
within the top 5 % of Fst values and the extreme 2.5 % of the θπ ratio 
distribution. From these regions, all associated SNPs were merged, and 
only one SNP per 10 kb window was retained to minimize redundancy.

2.3.3. Functional SNPs identification based on impact effects
For categorizing the impact effects of SNPs, we firstly construct the 

databases for reference genome of spotted sea bass 
(JAYMHB000000000) using “build” mode of SnpEff software (v5.0), 
then we performed SNP functional annotation using “ann” mode of 
SnpEff according to the annotated genomic locations (Cingolani et al., 
2012). Annotation results classified SNPs into 4 impact effects, including 
HIGH, LOW, MODERATE and MODIFIER types based on their predicted 
biological consequences. Of which, high-impact SNPs were defined as 
variants that cause significant disruptions to protein structure or func
tion, including stop gained, frameshift, and splice site variants, high
lighting their crucial roles in genomic regions. Consequently, all high- 
impact SNPs were prioritized for array inclusion due to their putative 
roles in critical biological pathways.

A composite functional SNP set was generated by integrating three 
types of functional SNPs, and only one SNP within each 300 bp window 
was retained to eliminate redundancy and ensure adequate spacing 
between SNPs. Finally, this comprehensive selection approach incor
porated a total of 3393 functional SNPs that will enable accelerated 
breeding progress.

2.4. Determination of background SNPs and probe design

To ensure an even distribution of physical distance and MAF values 
of background SNPs across the genome, we first divided the final high- 
confidence SNP database into five MAF bins: 0–0.1, 0.1–0.2, 0.2–0.3, 
0.3–0.4, and 0.4–0.5. These MAF bins were selected to capture a broad 
spectrum of allele frequencies, from rare to common variants, thereby 
ensuring comprehensive coverage of genetic diversity within diverse 
populations. This stratification enhances the utility of array in genomic 
analyses and breeding applications by providing balanced representa
tion across different allele frequency spectra. Due to the varying number 
of SNPs within each MAF bin, with initial counts of 1,416,395, 
1007,089, 493,439, 358,533 and 252,906 in the respective bins, we 
selected background SNPs within each MAF bin using different window 
sizes to maintain an even distribution of SNPs across the genome. Spe
cifically, we retained only one SNP within every 35 kb, 30 kb, 20 kb, 15 
kb, and 12 kb window for 0–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4–0.5 
MAF bins, respectively. The selection of smaller window sizes for higher 
MAF bins ensures that common variants are adequately represented, 
while larger window sizes for lower MAF bins prevent excessive 
redundancy of rare variants. However, several SNPs in different MAF 
bins still exist in close physical distance in genome. Furthermore, we 
merged all background SNPs and randomly retained one SNP within 
each 10 kb genomic region, which could retain appropriate SNP 
numbers for array development. Additionally, background SNPs located 
within 300 bp of functional SNPs were further removed to avoid data 
redundancy. Our approach effectively mitigates SNP density discrep
ancies of different MAF bins and minimizes redundancies, ultimately 
resulting in a total of 41,607 background SNPs that are evenly distrib
uted across all chromosomes.

Finally, a total of 45,000 SNPs were selected for probe design. Each 
probe was designed as a 110 bp double-stranded DNA sequence, 
adhering to quality standards of 30 %–70 % GC content for background 
SNPs and 20 %–80 % GC content for functional SNPs. Additionally, 
probes were constrained to regions with five or fewer homologous se
quences to ensure specificity. Three background SNPs were removed 
due to probe design failures. The remaining probes were subsequently 
optimized and adjusted based on genotyping results. Ultimately, the 
“LuXin-I" liquid SNP array was developed, encompassing 44,997 target 
SNPs using GBTS technology for spotted sea bass.

2.5. The assessment of genotyping performance for LuXin-I SNP array

To evaluate the genotyping accuracy and reliability of LuXin-I SNP 
array for spotted sea bass samples with complex population contexts, 
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two rounds of genotyping using the 45 K SNP array were conducted on 
218 representative samples, encompassing 132 north samples and 86 
south samples. Genomic DNA was extracted from the pectoral fins of all 
individuals. After assessing DNA quantity and quality using a nucleic 
acid analyzer (OSTC, China), high-quality DNA samples were utilized for 
DNA library construction and sequencing at MolBreeding Biotechnology 
Co., Ltd., Shijiazhuang. The genotyping process and hard filter using 
GATK has been described in our previous study (Zhang et al., 2023a). To 
evaluate the genotyping performance of LuXin-I SNP array for core 
SNPs, genotype call rate, genotype missing rate were calculated using 
VCFtools (v0.1.13), genotype concordance (GC) and the squared Pear
son correlation coefficient of genotype dosage (R2) between the SNP 
array and WGS data were calculated using BCFtools (v1.20). Further
more, to ensure consistency and reliability across the entire dataset, 
identical criteria were applied to evaluate the genotyping performance 
of multiple single-nucleotide polymorphisms (mSNPs), which captured 
in target genomic segments due to common features of GBTS technology 
(Liu et al., 2022).

2.6. The application of LuXin-I SNP array in genetic improvement for 
spotted sea bass

To evaluate the application potential of LuXin-I SNP array in genetic 
improvement of spotted sea bass, we extracted all 130,563 mSNPs from 
WGS data of an expanded cohort of 451 samples, which included the 
initial 218 representative samples. Four growth traits including body 
weight (BW), body height (BH), total length (TL) and body length (BL) 
were recorded and detailed information were provided in Table S3. This 
strategy enabled us to assess the effectiveness and applicability of both 
the mSNP set and the full SNP set in a larger population without 
incurring additional genotyping costs (Liu et al., 2022). The perfor
mance of SNP array and WGS data was compared through population 
structure analysis, GWAS, genetic parameter estimations, and GP. Ge
notype data from 451 samples were filtered using Plink software (v1.90) 
as following parameters: –geno 0.05, − -hwe 1e− 5, and –maf 0.05, 
resulting in 99,968 SNPs for the SNP array and 4,760,402 SNPs for the 
WGS data.

To evaluate the ability of LuXin-I SNP array to accurately reflect the 
underlying population structure compared to WGS data, a neighbor- 
joining tree was constructed using genetic distances matrix calculated 
with VCF2Dis (v1.45) (https://github.com/BGI-shenzhen/VCF2Dis). In 
addition, principal component analysis (PCA) was conducted using 
Plink, and the first two principal components (PC1 and PC2) were used 
to delineate genetic groups. The GWAS analyses for four growth traits 
were performed based on MLM using GEMMA (v0.98.5) (Zhou and 
Stephens, 2012), the first two PCs and marker effect value were selected 
as fixed effects, and polygenic effect value was integrated in MLM as 
random effects to control for false positives. The results based on SNP 
array and WGS data were compared to assess the effectiveness of the 
SNP array in detecting trait-related SNPs.

To further validate the effectiveness of the SNP array in capturing 
genetic variance associated with economic traits. The genomic rela
tionship matrix (GRM) for both datasets was estimated using GCTA 
(v1.94.0) with parameter: –make-grm (Yang et al., 2011). Heritability 
(h2) for growth traits was estimated as the formula: h2 = σg2/ (σg2 + σe2), 
where σg2 represents the additive genetic variance and σe2 is the residual 
variance, the variance components were calculated by GCTA using 
parameter: –reml. In addition, genetic correlation among traits was also 
calculated using GCTA with parameter of “–reml-bivar”. To access the 
application potential of LuXin-I SNP array in genomic selection, 
genomic prediction (GP) for BW trait was conducted using five-fold 
cross-validation with 5 replicates. Specifically, 451 samples were 
randomly divided into training sets (n = 361) and testing sets (n = 50). 
Of which, SVM model, one of machine-learning methods belonging to 
kernel-based algorithms, was used to build GS model based on training 
sets using the R package kernlab (v0.9–32) (Karatzoglou et al., 2004), 

then the GS model was used to calculate the genomic breeding values 
(GEBVs) of testing sets. We built 6 different SNP sets with the numbers of 
0.1 k, 1 k, 5 k, 10 k and 100 k. GWAS was performed in train sets to select 
corresponding numbers of SNP based only on P-value. Furthermore, 
predictive accuracies were defined as the average Pearson correlation 
between actual phenotypes and GEBVs divided by the square root of h2 

for BW trait.

3. Results and analysis

3.1. Population structure and genetic diversity analysis

WGS data were collected from both wild, breeding and farmed 
populations, including 1107 individuals, to generate 3,528,641 high- 
quality SNPs for the development of LuXin-I SNP array. To clarify the 
genetic background and population stratification of 1107 individuals, 
we conducted population structure and genetic diversity analysis 
(Fig. 1). Principal component analysis (PCA) revealed that wild and 
breeding populations collectively formed a single genetic cluster, 
whereas farmed populations exhibited more complex genetic structures. 
Notably, southern farmed samples formed a distinct genetic group 
separated from other clusters along the first principal component (PC1), 
which explained 40.75 % of the total genetic variance (Fig. 1A). 
Northern farmed samples (representing fast growth strain) were further 
subdivided into two genetic subgroups, supported by both PCA and 
ADMIXTURE analysis as the optimal structure (K = 3) (Fig. 1B, 
Table S4), with several individuals still clustering within the wild and 
breeding populations. Furthermore, we estimated nucleotide diversity 
(π) within wild, breeding, and farmed populations, as well as pairwise 
fixation indices (Fst) between populations. Nucleotide diversity was 
relatively consistent across groups, ranging from 1.452 × 10− 3 to 1.506 
× 10− 3. The farmed population showed the highest π value (1.506 ×
10− 3), further supporting the genetic distinction between northern and 
southern farmed populations. Genetic differentiation, measured by Fst, 
was low between breeding and wild populations (Fst = 0.00497), 
moderate between farmed and wild populations (Fst = 0.0180), and 
highest between farmed and breeding populations (Fst = 0.0212), 
indicating that farmed populations are more genetically differentiated 
from their wild and breeding counterparts (Fig. 1C).

3.2. The statistical results of the core SNPs

Building upon the high-quality SNP set that effectively captured 
population stratification and genetic diversity, we consider these SNPs 
that are widely distributed across population, thus providing a repre
sentative and unbiased genomic basis for subsequent marker selection to 
design for LuXin-I SNP array. The whole array design and application 
has been described in Fig. 2. Following an intensive filtering process and 
probe design, 44,997 target SNPs including 3393 functional SNPs and 
41,604 background SNPs were integrated in the SNP array (Table 1). 
Detailed genotype data information including SNP_ID, chromosome, 
position, and allele have been described in Table S5 and Table S6 for 
functional and background SNPs, respectively. In addition, we have 
provided detailed P-value of GWAS-informative SNPs, categorized by 
their phenotype in Supplementary Table 5. Overall, target SNPs were 
evenly distributed across the genome, with an average density of one 
SNP per 13,838 bp, except for several high-density genomic regions on 
chromosome 19 related to sex determination (Fig. 3A). The density and 
distribution of target SNPs indicated the array’s ability to broadly 
represent genetic diversity while targeting specific traits. Moreover, the 
number of MAF values was 3817, 6120, 8844, 10396 and 15,820 for the 
0–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4–0.5 MAF bins, respectively 
(Fig. 3B). In our analysis, we retained a certain number of SNPs with low 
MAF values, considering that many crucial SNPs are often rare variants.
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3.3. Characterization and summary of the LuXin-I SNP array

Genotyping was performed on 218 test samples using LuXin-I SNP 
array, successfully capturing a total of 130,563 mSNPs within 44,997 
target genomic segments. The distribution of mSNPs, target segments, 

and chromosome lengths in the SNP array was shown in Fig. 4A. Each 
chromosome contained approximately 1.87 K target segments and 5.44 
K mSNPs, resulting in an average of 2.90 SNPs genotyped per target 
segment. The MAF distributions of core SNPs and mSNPs in the test 
samples were significantly different, with average MAF values of 0.304 

Fig. 1. (A) The principal component analysis (PCA) of all 1107 samples. (B) Population genetic structure analysis of 1107 samples based on optimal K value =3. (C) 
Genetic diversity analysis for wild, breeding and farmed populations, the value on each dotted line indicates fixation indices (Fst) between the two populations, and 
the value in each cycle represents nucleotide diversity (π) in corresponding population.

Fig. 2. Design framework of the LuXin-I SNP array and flow chart of application scenarios in genetic improvement for spotted sea bass.
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for core SNPs and 0.216 for mSNPs, respectively (Fig. 4B, Table S7). 
This indicates that core SNPs possess higher polymorphism rates 
compared to mSNPs. Additionally, the SNP location of core SNPs and 
mSNPs in genomic region were basically identical (Fig. 4C). Although 
most core SNPs and mSNPs were located in intergenic or intronic re
gions, a higher proportion of core SNPs (0.0564) and mSNPs (0.0460) in 
exon regions was observed in array data compared to WGS data (0.0269) 
from our previous research (Zhang et al., 2023a). These results suggest 
that SNP genotyping data using LuXin-I SNP array could provide 
adequate coverage across different genomic regions.

3.4. The evaluation of genotyping for the LuXin-I SNP array

Four metrics including genotype call and missing rate, GC and R2 

values were used to assess the genotyping performance of LuXin-I SNP 
array on 218 test samples. A remarkable genotype performance for core 
SNPs was observed, with locus calling rates ranging from 96.90 % to 
99.70 %, and an average of 99.48 % (Fig. 5A, Table S8). The GC and R2 

values for core SNPs between array data and WGS data were 94.57 % 
and 94.02 %, respectively (Fig. 5A, Table S8). In addition, the genotype 
call rate for mSNPs was 99.52 %, with GC and R2 values of 94.10 % and 
94.80 %, respectively (Fig. 5B, Table S8). The genotype missing rates of 
core SNPs in the test samples indicated that 83.26 % of SNPs had no 
missing genotypes, and only 1.05 % of SNPs had a genotype missing rate 

greater than 0.1 (Fig. 5C). Although the SNP array detected a higher 
number of mSNPs compared to core SNPs, a lower percentage (0.40 %) 
was observed for mSNPs that genotype missing rates greater than 0.1 
(Fig. 5D). These results indicate that most target segments effectively 
capture both core SNPs and mSNPs. Overall, the genotyping results 
demonstrate that LuXin-I SNP array is a highly accuracy and reliability 
genotyping tool for spotted sea bass.

3.5. Population structure analysis

In this study, 451 samples derived from northern and southern 
cultivated populations were selected to assess the efficacy of LuXin-I 
SNP array in genetic improvement for spotted sea bass. Phylogenetic 
trees constructed from both SNP array and WGS data indicated that the 
cultivated spotted sea bass samples could be significantly divided into 
two genetic groups: North and South (Fig. 6A). PCA results also sup
ported the classification of samples into two subpopulations (Fig. 6B). 
These population structure analyses demonstrate the superior perfor
mance of the LuXin-I SNP array in characterizing the population struc
ture of spotted sea bass.

3.6. The comparison of genome-wide association results of growth traits

Given the substantial difference in variant density between LuXin-I 
SNP array (99,968 SNPs) and WGS data (4,760,402 SNPs), we applied 
platform-specific thresholds to enable a comparative analysis of detec
tion power: 0.05/N (5.00 × 10− 7) for the SNP array and 1/N (2.10 ×
10− 7) for WGS data, where N represents the total number of SNPs 
analyzed per platform. It is important to note that these thresholds were 
used for comparative purposes and do not imply strict genome-wide 
significance. Our objective was to evaluate the relative performance of 
the SNP array against WGS in detecting trait-associated signals, rather 
than to identify novel trait-related SNPs. For TL, BL and BW traits 
(Fig. 7A-C, Table S9), almost all trait-related SNPs identified in the WGS 
data were also detected by the SNP array. Although several SNPs, 
including SNP:1–8,192,599, SNP:1–8,192,639 and SNP:13–20,968,525, 
were not directly detected using SNP array, nearby SNPs 
(SNP:1–8,193,268 and SNP:13–20,968,579) were also identified. These 
proximity SNPs could also be annotated to the same genes, thereby 
maintaining the association with the respective traits. However, the SNP 
array exhibited relatively poor performance for the BH trait (Fig. 7D, 
Table S9), as several SNPs on chromosome 4 identified through WGS 
data were not genotyped by the SNP array. Overall, the evenly and 
widely spaced mSNPs in LuXin-I SNP array provide a moderate level of 
detection power for GWAS targeting economically important traits. 
However, the lower SNP density inherently limits the enough detection 

Table 1 
Summary of target SNPs in each type for LuXin-I SNP array.

Types of target SNP in LuXin- 
I SNP array

SNP 
number

Sample 
size

Data source

Background SNPs 41,604 1107
(Chen et al., 2023; Liu 
et al., 2025; Zhang et al., 
2023a)

Growth related 441 514 (Zhang et al., 2023a)
Sex determination related 174 514 Unpublished
Nocardia seriolae resistance 

related
19 450 Unpublished

Heat tolerance related 445 493 (Liu et al., 2025)
Alkalinity tolerance related 444 287 (Zhang et al., 2025a)
Swimming performance 

related 452 446 (Li et al., 2025a)

Selective signature between 
new strains and wild 
populations

50 530 Unpublished

Selective signature between 
northern and southern 
populations

315 1107 Unpublished

High impact in genome 1053 1107
(Chen et al., 2023; Liu 
et al., 2025; Zhang et al., 
2023a)

Fig. 3. (A) Genome-wide distribution of 44,997 target SNPs across 24 chromosomes. Different colors represent the corresponding number of SNPs within 1 Mb 
distance according to the legend. (B) Minor allele frequency (MAF) distribution histogram of target SNPs in the LuXin-I SNP array.
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power compared to WGS data. Therefore, continuously incorporating 
new functional SNPs is essential to enhance the detection capabilities of 
LuXin-I SNP array. This ongoing enhancement will ensure that LuXin-I 
SNP array remains effective tools for identifying meaningful genetic 
associations in spotted sea bass.

3.7. Genetic parameter estimations and genomic prediction (GP)

The heritability (h2) estimation and genetic correlations for growth 
traits in 451 samples were calculated using SNP array and WGS data in 
spotted sea bass (Table 2). Heritability estimations obtained from SNP 
array data were 0.581, 0.579, 0.592 and 0.550 for TL, BL, BH and BW 
traits, respectively. These estimates were slightly higher than those 
derived from WGS data, which were 0.572, 0.565, 0.571, and 0.534 for 
TL, BL, BH, and BW, respectively. In addition, high genetic correlations 
(0.694–0.992) for growth traits were observed and the results between 
SNP array and WGS data were basically identical. These results indicate 
that SNP array data are sufficient for estimating genetic variance com
ponents related to growth traits in spotted sea bass. Furthermore, pre
dictive accuracies for BW trait at different SNP numbers were compared 
between SNP array and WGS data. We observed that predictive accu
racies based on SNP array data (ranging from 0.686 to 0.813) were 
consistently higher than those based on WGS data (ranging from 0.643 
to 0.681) across various SNP numbers. This trend was particularly 
pronounced when using 0.1 K SNPs (Fig. 8 and Table S10). These 
findings indicated that LuXin-I SNP array is a more effective tool for 
selection breeding than WGS data in spotted sea bass.

4. Discussion

Reducing genotyping costs while obtaining high-quality genotype 
data remains a critical challenge in aquaculture breeding and genetic 
research. Liquid SNP array technology offers an efficient genotyping 
strategy and has been successfully developed for several aquaculture 
species. This technology enables the identification of functional genes 
and facilitates the selection and improvement of desirable traits such as 
growth rate, disease resistance, and environmental adaptability (Li 
et al., 2025b; Liu et al., 2022; Zhou et al., 2024b).

Spotted sea bass, a commercially important mariculture fish in 
China, has historically lacked high-quality varieties. To address this, we 
have focused on utilizing genetic resources and genomic selection to 
improve economically important traits in spotted sea bass over recent 
years. However, our previous research relied exclusively on WGS data, 
which poses significant genotyping cost challenges for future selection 
breeding programs that require genotyping large numbers of in
dividuals. Therefore, developing a liquid SNP array is an urgent neces
sity to facilitate molecular design and breeding with high accuracy and 
efficiency. In this study, we developed a high-throughput 45 K liquid 
SNP array, named as “LuXin-I", based on resequencing data using GBTS 
technology, and evaluated its genotyping performance and application 
potential in the genetic improvement of spotted sea bass. To the best of 
our knowledge, this study represents the first development and appli
cation of a liquid SNP array for spotted sea bass.

Here, WGS data from 1107 samples were selected for SNP array 
development. We acknowledge the limitation regarding pedigree and 
parental sex information. For wild individuals, parental data was un
available as fish samples were captured directly from natural marine 

Fig. 4. (A) Distribution statistics of target segments and multiple single-nucleotide polymorphisms (mSNPs) in the LuXin-I SNP array across 24 chromosomes. Target 
segments and mSNPs counts are shown on the left axis and chromosome length is shown on the right axis. (B) The density distribution curve of MAF value for core 
SNPs and mSNPs in the LuXin-I SNP array. (C) Statistics of core SNPs and mSNPs with different genomic regions.
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environments. Practically, sexual identification of adult spotted sea bass 
cannot be reliably achieved through non-destructive methods during 
non-breeding periods, and the long breeding season (October–January) 
introduces breeding inconsistency for each parent fish. Furthermore, as 
an important mariculture fish in China, systematic genetic breeding 
programs for spotted sea bass remain at a nascent stage. Given the 
operational constraints of large-scale breeding stock management 
(typically >200 fish per pound) and infrastructure limitations, the 
commercial breeding strategy mainly employs mass selection. Conse
quently, we are currently unable to provide the number of female and 
male parents for current experiment fish and pedigree information for 
experimental samples. In the future, we will accurately determine 
parent-offspring relationships based on genotype data to advance 
genomic selection. In addition, population structure and genetic di
versity analysis based on 3,528,641 high-quality SNP set clearly 
revealed comprehensive genetic background and population stratifica
tion for wild, breeding and farmed populations (Fig. 1). These further 
indicated that high-quality SNPs effectively capture common genetic 
variation present in diverse populations of spotted sea bass without 
introducing significant population bias, thus providing a representative 
and unbiased genomic basis for subsequent marker selection.

Following the principles of evenly genomic distribution and appro
priate MAF ranges, we performed a rigorous filtering process to select 
41,607 representative SNPs as background SNPs. Additionally, based on 
our research including both published and unpublished data, we 
incorporated 3393 functional SNPs related to economically important 
traits, selective signatures, and high-impact genomic regions into the 

array design. After excluding three background SNPs due to probe 
design failures, a total of 44,997 customized SNPs were selected as 
target SNPs for the development of LuXin-I SNP array. Genotyping re
sults demonstrated a significant increase in the number of detectable 
mSNPs (130,563), with an average of 2.9 times more SNPs detected per 
target genomic segment (44,997), highlighting the high SNP content of 
LuXin-I SNP array (Fig. 4A). The distribution of MAF values revealed a 
higher site polymorphism for core SNPs (0.304) compared to mSNPs 
(0.216), as expected, given the strict filtering applied to core SNPs, while 
mSNPs were less stringently considered (Fig. 4B). Furthermore, the 
proportion of core SNPs and mSNPs across different genomic regions 
was nearly identical (Fig. 4C), with a higher percentage of SNPs located 
in exon regions compared to WGS data, further demonstrating the 
representativeness of SNP data genotyped by LuXin-I SNP array. High 
individual calling rates were observed for both core SNPs (99.48 %) and 
mSNPs (99.52 %), with low SNP missing rates (1.05 % and 0.40 %, 
respectively), highlighting the robustness of LuXin-I SNP array as a high- 
throughput genotyping tool (Fig. 5). These excellent genotyping per
formances are consistent with those of liquid SNP arrays used in aqua
culture fishes such as leopard coral grouper (Zhou et al., 2024a), large 
yellow croaker (Wang et al., 2023) and tiger pufferfish (Li et al., 2025b). 
However, the GC and R2 between SNP array and WGS data ranged from 
94.10 % to 94.80 % (Fig. 5), which were relatively lower compared to 
those of SNP arrays for large yellow croaker (0.963) (Wang et al., 2023) 
and mud crab (0.954) (Ye et al., 2025). These observed concordance 
differences may be attributed to instances where homozygous genotypes 
being called as heterozygous or were there cases of opposing 

Fig. 5. Genotyping evaluation for the LuXin-I SNP array with genotype call, GC and R2 between the SNP array and WGS data for (A) core SNPs and (B) mSNPs. GC: 
genotype concordance; R2: the squared Pearson correlation coefficient of genotype dosage. Statistics of genotype missing rate for (C) core SNPs and (D) mSNPs.
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homozygous genotypes. We hypothesize that the uneven sequencing 
depth of the WGS data for several test samples, which ranged from 7.6×
to 31.56× (Table S11), may have contributed to genotype errors. In 
contrast, the SNP array employs targeted capture and high-depth 
sequencing of specific genomic segments, resulting in more reliable 
genotype calls. Despite these minor discrepancies, the overall high 
concordance reaffirms the accuracy and reliability of the LuXin-I SNP 
array for high-throughput genotyping performance.

Elucidating population structure, understanding the genetic basis of 
traits, and predicting GEBV for target traits are critical components of 
selection breeding programs for spotted sea bass. To assess the potential 
of LuXin-I SNP array for genetic improvement in growth traits, we sys
tematically compared its performance across several key applications: 
population structure analysis, GWAS, genetic parameter estimations and 
GP. These comparisons offer valuable insights into the array’s utility for 
breeding programs focused on improving the performance of economi
cally important traits. The ability to accurately distinguish population 
assignments is crucial for managing genetic diversity and preventing 
inbreeding in aquaculture populations (Ciezarek et al., 2022). In our 
study, both the neighbor-joining tree and PCA, based on SNP array data, 
demonstrated identical performance to WGS data, effectively revealing 
clear genetic divergence between the northern and southern populations 
of spotted sea bass (Fig. 6). However, the SNP array data exhibited lower 
resolution than WGS in detecting trait-associated SNPs using GWAS 
(Fig. 7). Although the mSNPs genotyped by the array provide adequate 

genome coverage, its reduced marker density inherently constrained its 
ability to capture and resolve certain significant SNPs at a finer scale. 
Consequently, this limitation necessitates continuous updates to incor
porate essential functional SNPs or the refinement of probe designs to 
enhance the detection capabilities of LuXin-I SNP array.

The variance components and h2 for growth traits of spotted sea bass 
were first estimated using SNP information from both SNP array and 
WGS datasets. The high estimated h2 values, ranging from 0.534 to 
0.592 (Table 2), confirm the substantial genetic basis of these traits, 
supporting the applicability of genomic selection for spotted sea bass 
breeding (Yu et al., 2023). Crucially, genetic correlation derived from 
SNP array data showed basically consistency with WGS results (Table 2). 
This consistency further supports the reliability of SNP array data for 
quantifying genetic parameters for growth traits, making it a feasible 
tool for selection breeding programs. Notably, SNP array data demon
strated higher predictive accuracies for BW trait than WGS data at 
various marker numbers, where a minimal panel of 100 GWAS- 
informative SNPs achieved the maximum prediction accuracy of 0.602 
for BW trait of spotted sea bass (Fig. 8), which is significantly higher 
than that using WGS data (Zhang et al., 2023a). Genomic prediction 
accuracy serves as a crucial evaluation metric in GS, directly deter
mining the efficiency of genetic improvement programs (Shan et al., 
2021). The enhanced predictive performance observed in this study 
compared to previous investigations can be primarily attributed to more 
test samples, high genetic relatedness, and diverse population structure 

Fig. 6. The comparison of (A) neighbor-joining phylogenetic trees and (B) principal component analysis (PCA) results between SNP array and WGS data.
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as described in (Liu et al., 2025), which is sufficient to estimate SNP 
effects and accurately predict GEBV of validation individuals. These 
findings underscore the critical importance of optimized reference 
population design to improve GS efficacy for growth traits in future 
spotted sea bass breeding program. Notably, the higher heritability es
timates, and predictive accuracies obtained with the SNP array 
compared to the WGS dataset are reasonable and likely reflect the 
advantage of using a smaller set of representative SNP markers. This 
effect may be attributed to sufficient genetic information though rela
tively lower marker density, which naturally reduced model complexity 
and lower multicollinearity among markers relative to the extensive 
WGS SNP set, particularly beneficial for limited sample sizes. These 
situations were also observed in the comparison between InDel and SNP- 
based GP, where InDel markers have equivalent power to SNP markers 
in genetic analyses, while obtained a higher predictive accuracy due to 
lower marker density than SNP (Zhang et al., 2024). Overall, the better 
performance in genetic parameter estimations and genomic prediction 
of LuXin-I SNP array confirm that it could be used as a cost-effective tool 
for genomic selection in breeding programs of spotted sea bass.

Fig. 7. The comparison of GWAS results for TL (A), BL (B), BW (C), and BH (D) traits between SNP array and WGS data. Mixed linear model (MLM) was used for 
these analyses.

Table 2 
Heritability (h2) and genetic correlation for growth traits using genomic rela
tionship matrix (GRM), and phenotypic correlation for growth trait using 
Pearson’s chi-squared test. Heritability is on the diagonal in bold; Genetic and 
phenotypic correlations are below the diagonal and above, respectively.

Group h2 ±

SE
TL BL BH BW

SNP array 
data

TL 0.581 ± 
0.0819

0.992 +
0.00431

0.705 +
0.0684

0.797 +
0.0592

BL 0.981
0.579 ± 
0.0840

0.694 +
0.0695

0.836 +
0.0537

BH 0.793 0.797
0.592 ± 
0.0800

0.915 +
0.0388

BW 0.830 0.833 0.857 0.550 ± 
0.0869

WGS data

TL 0.572 ± 
0.0853

0.989 +
0.00353

0.712 +
0.0732

0.789 +
0.0602

BL 0.981
0.565 ± 
0.0877

0.701 +
0.0703

0.825 +
0.0556

BH 0.793 0.797
0.571 ± 
0.0836

0.912 +
0.0268

BW 0.830 0.833 0.857 0.534 ± 
0.0906

C. Zhang et al.                                                                                                                                                                                                                                   Aquaculture 613 (2026) 743301 

10 



5. Conclusion

In this study, the first 45 K liquid SNP array for spotted sea bass, 
named as “LuXin-I", was developed based on 1107 WGS data using GBTS 
technology. LuXin-I SNP array integrates 41,604 genome-wide back
ground SNPs with uniform genomic distribution and appropriate MAF 
ranges, and 3393 functional SNPs associated with economically 
important traits, selection signatures, and high impact genomic regions. 
In addition, LuXin-I SNP array demonstrates excellent genotyping per
formance and application potential in population structure analysis, 
GWAS, genetic parameter estimations, and GP, achieving higher accu
racy to WGS data. As an open-access, cost-effective and reliable geno
typing platform, LuXin-I array enables large-scale genotyping for 
spotted sea bass and precise estimation of GEBV in genomic selection, 
significantly advancing genetic improvement for spotted sea bass.
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