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Spotted sea bass (Lateolabrax maculatus), a commercially vital aquaculture species in China, faces critical chal-
lenges including the degeneration of genetic characteristics and long-term generation interval which hinder
sustainable industry development. Genomic selection (GS) presents a promising strategy to accelerate genetic
improvement of economically crucial traits. However, the absence of cost-effective, high-throughput genotyping
tools has impeded GS implementation in this species. To address this gap, in this study, the first 45 K liquid SNP
array for spotted sea bass, named as “LuXin-I", was developed using genotyping by target sequencing (GBTS)
technology. Leveraging high-confidence SNP dataset identified from 1107 WGS data exhibiting the highest ge-
netic diversity, 41,604 genome-wide background SNPs with uniform genomic distribution and appropriate MAF
ranges, and 3393 functional SNPs associated with economically important traits, selection signatures, and high
impact genomic regions were successfully integrated in LuXin-I SNP array and used for probe design. A total of
130,563 mSNPs within 44,997 target genomic segments were captured through genotyping evaluation for 218
test samples. The SNP array demonstrated robust genotyping performance, with exceptional genotype call rates
of 99.48 % and 99.52 % for core SNPs and mSNPs, and high concordance with GC and R? values greater than 94
%. Moreover, only 1.05 % and 0.40 % of core SNPs and mSNPs had a genotype missing rate greater than 0.1,
confirming its accuracy and reliability for genotyping spotted sea bass samples. In addition, LuXin-I SNP array
demonstrated identical performance in resolving population structure compared to WGS data while reduced
GWAS resolution for trait-associated SNPs due to marker density limitations. Notably, the SNP array achieved
comparable heritability (h%) estimates ranging from 0.534 to 0.592 and superior genomic prediction accuracy for
growth traits comparable to WGS data. In summary, LuXin-I SNP array will provide a cost-effective and reliable
genotyping platform, enabling large-scale genotyping for spotted sea bass and advancing genetic improvement.

1. Introduction

Spotted sea bass (Lateolabrax maculatus) has emerged as a commer-
cially vital mariculture fish in China, with annual production surpassing
200,000 tons in recent years (Li et al., 2025a). Renowned for its superior
nutritional profile, delicate flavor, and cultural importance, this species
has gained substantial popularity in both domestic and international
markets. However, the lack of high-quality strains or varieties has

consistently hindered the development and expansion of the spotted sea
bass industry due to various environmental threats, disease invasions
and germplasm deterioration caused by frequent inbreeding practices
(Zhang et al., 2024). Genomic selection (GS) has revolutionized modern
breeding programs by offering enhanced prediction accuracy, reduced
inbreeding rates, accelerated genetic gains, and shortened generational
intervals, which has contributed to remarkable genetic improvement for
plant, livestock and aquaculture species (Crossa et al., 2017; Georges
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etal., 2019; Zhou et al., 2024b). Our team has committed to accelerating
genetic improvement for economically important traits of spotted sea
bass and has achieved several genetic advancements in the application
of GS for growth (Zhang et al., 2023a), alkalinity tolerance (Zhang et al.,
2025a), heat tolerance (Liu et al., 2025) and swimming performance
traits (Li et al., 2025a). Through extensive GS modeling, we found that
an appropriate number of informative single nucleotide polymorphism
(SNP) markers is sufficient to achieve high predictive accuracy, indi-
cating that whole-genome resequencing (WGS) generates excessive
redundant markers (millions of SNPs) that provide diminishing returns
for prediction accuracy. Moreover, genotyping large-scale individuals
using WGS becomes economically prohibitive in commercial breeding
operations. Therefore, developing high-throughput and cost-effective
genotyping tools were urgent need for accelerating genetic progress of
spotted sea bass through GS breeding.

While both solid SNP arrays and reduced-representation genome
sequencing (RRGS) serve as cost-effective genotyping solutions for
population-level studies (Zhou et al., 2020), their technical architectures
present distinct trade-offs that require careful consideration in specific
research methods and goals (Kockum et al., 2023). Compared to enzyme
digestion bias and uneven coverage of genomic regions of RRGS
methods, solid SNP arrays are favored genotyping tools for their feasi-
bility to be customized to target specific SNPs, high genotyping accu-
racy, robustness and straightforward use (Liu et al., 2023; Robledo et al.,
2018; Zhou et al., 2020). These merits have driven successful array
development for high-quality aquaculture species including common
carp (Cyprinus carpio) (Xu et al., 2014), Nile tilapia (Oreochromis niloti-
cus) (Yanez et al., 2020), channel catfish (Ictalurus punctatus), blue cat-
fish (I furcatus) (Liu et al., 2014; Zeng et al., 2017), Atlantic salmon
(Salmo salar) (Houston et al., 2014), large yellow croaker (Larimichthys
crocea) (Zhou et al., 2020) and Japanese flounder (Paralichthys olivaceus)
(Zhou et al., 2021). Efficient and accurate high-throughput genotyping
capabilities using solid arrays have revolutionized genetic analyses in
aquaculture, enabling large-scale genome wide association study
(GWAS) and accelerating genetic improvement through GS breeding
programs (Chen et al., 2024; Zhou et al., 2024b). Despite these ad-
vancements, the high customization cost, expensive equipment and low
flexibility hinder the widespread development of solid arrays for aqua-
culture fishes (Rasheed et al., 2017). Additionally, collected samples
need to be sent to foreign sequencing facilities for genotyping using solid
arrays, which also increases financial and time costs. These constraints
collectively underscore the urgent need for developing affordable,
locally adaptable SNP array solutions tailored to aquaculture industries.

The emergence of genotyping by target sequencing (GBTS) tech-
nology represents a novel genotyping strategy that effectively integrates
the complementary advantages of solid SNP arrays and RRGS ap-
proaches. This approach firstly capture and hybridize targeted genomic
regions using custom probes, followed by high-depth sequencing to
accurately identify and genotype SNPs after library construction (Guo
et al., 2019; Guo et al., 2021). Therefore, GBTS, also known as liquid
SNP array, combines the advantages of customizability, high genotyping
accuracy and repeatability of solid arrays with the flexible design and
low genotyping cost of RRGS approaches (Liu et al., 2023; Wang et al.,
2023). Moreover, due to reduced design costs and short turnaround
times, new and non-informative genetic variants can be constantly
added to or removed from liquid SNP arrays whenever necessary,
conferring liquid SNP arrays with huge potential for applications in
breeding research (Li et al., 2025b). Recently, liquid SNP arrays have
gradually become mainstream in array research and widely applied in
species such as maize (Guo et al., 2019), wheat (Xiang et al., 2023),
chicken (Liu et al., 2023), pigs (Zhang et al., 2025b) and cattle (Chen
et al., 2024). For aquaculture fishes, a 20 K DongXin I liquid SNP array
was developed for vibriosis-resistant germplasm of the leopard coral
grouer (Plectropomus leopardus) (Zhou et al., 2024a), a 55 K NingXin-III
liquid SNP array was developed based on the 55 K NingXin-II solid SNP
array for large yellow croaker (Wang et al., 2023), a 20 K liquid SNP
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were developed to reveals QTLs for disease resistance in tiger pufferfish
(Takifugu rubripes) (Li et al., 2025b). In addition, several liquid SNPs
were also developed for other aquaculture species, including Pacific
abalone (Haliotis discus hannai) (Liu et al., 2022), and estuarine oyster
(Crassostrea ariakensis) (Zhang et al., 2023b), mud crab (Scylla para-
mamosain) (Ye et al., 2025), and Pacific white shrimp (Litopeneaus
vannamei) (Yu et al., 2020). This expanding applications of GBTS in
aquatic species underscores the critical need for developing a liquid SNP
array for spotted sea bass. Such a platform would not only overcome the
economic constraints of traditional WGS genotype but also enable dy-
namic adaptation to evolving breeding objectives, ultimately acceler-
ating genetic gain in this commercially vital species.

Leveraging GBTS technology, we developed “LuXin-I", a 45 K liquid
SNP array tailored for spotted sea bass. This array integrates numerous
background SNPs that are evenly distributed across the genome, as well
as several functional SNPs associated with economically important
traits, selection signatures, and high impact genomic regions. Further-
more, the genotyping performance of LuXin-I was first validated using
218 test samples using comprehensive criteria, and the application
performance for genetic improvement was systematically compared to
WGS data through population structure analysis, GWAS, genetic
parameter estimations, and GP. Our study would provide an open-
access, cost-effective and reliable tool for large-scale genotyping for
spotted sea bass, facilitating its genetic research and GS application.

2. Materials and methods
2.1. Data description and SNP identification

To comprehensively capture the genetic diversity of spotted sea bass,
we implemented a dual-strategy sampling approach. First, we selected
100 representative wild germplasm samples collected from 14 sites
along the Chinese coastline (100data). These samples exhibited different
genetic structures and clustered into three highly differentiated pop-
ulations including Bohai Gulf (BH) and Beibu Gulf (BB) and intermediate
(IM) populations. Among these, the BH and BB populations show sig-
nificant phenotypic divergence in traits such as low-temperature toler-
ance and growth performance (Chen et al., 2023). Second, to ensure the
broad capabilities of SNP arrays in genotyping diverse wild and farmed
populations, we selected a total of 1007 WGS data including 301 wild
and 706 farmed individuals. Specifically, 1007 samples were sourced
from three local fish farms in Dongying (DY), Tangshan (TS), and Yantai
(YT), China. This included 301 one-year-old fish from DY farm, collected
from natural populations in the Yellow Sea and Bohai Sea (DY wild), 213
five-year-old broodstock from TS farm (TS breeding), both showing
growth differentiation at the individual level. And 493 two-year-old fish
from YT farm were derived from northern (fast growth strain) and
southern farmed populations, which exhibiting phenotypic differentia-
tion including growth and heat tolerance trait. Detailed sequencing in-
formation is described in Table S1, and variant calling were conducted
using HaplotypeCaller procedure of GATK (v4.5.0.0) (McKenna et al.,
2010). SNP refinement was conducted using Plink (v1.90) based on the
following criteria: minor allele frequency (maf) > 0.05, genotyping call
rate (geno) > 0.95, the P-value of the Hardy-Weinberg equilibrium test
(hwe) > 0.01 (Purcell et al., 2007). Furthermore, SNPs with a hetero-
zygosity rate above 0.5 and non-biallelic SNPs were excluded using
BCFtools (v1.9) (Genovese et al., 2024) to establish a high-confidence
SNP dataset for subsequent analyses and marker selection of SNP array.

2.2. Population structure and genetic diversity analysis

High-confidence SNP were subjected to population structure and
genetic diversity analysis. Principal component analysis (PCA) was
conducted using Plink (Purcell et al., 2007), with the first two principal
components (PC1 and PC2) visualized to reveal genetic clustering.
Population structure analysis was inferred using Admixture (v1.3.0)
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(Alexander et al., 2009) with K values ranging from 1 to 5, allowing the
software to infer population stratification based on the optimal K values.
Furthermore, we calculated within-population nucleotide diversity (z)
for wild, breeding and farmed population. Pairwise fixation indices (Fst)
were computed to calculate the level of genetic differentiation between
each pair of populations using VCFtools (v0.1.16) with a 10-kb sliding
window and a 5-kb step size (Danecek et al., 2011).

2.3. Functional SNPs selection for LuXin-I SNP array

2.3.1. Functional SNPs identification using genome-wide association study
(GWAS)

Functional SNPs underlying economically important traits are
essential for the accuracy and efficiency of calculating genomic esti-
mated breeding values (GEBV). To achieve this, we strategically prior-
itized several GWAS-informative SNPs associated with economic traits
and incorporated them into the array development. In detail, our team
has conducted GWAS using 514 samples (DY and TS individuals) for
growth traits (Zhang et al., 2023a), 287 DY samples for alkalinity
tolerance trait (Zhang et al., 2025a), 493 YT samples for heat tolerance
trait (Liu et al., 2025), 446 samples for swimming performance trait (Li
et al., 2025a), 514 samples (367 males and 147 females) for sex deter-
mination (unpublished data), and 450 samples for disease resistance to
Nocardia seriolae (unpublished data). Detailed phenotype differentiation
data is described in Table S2 and mixed linear model (MLM) incorpo-
rating population structure and genetic relatedness was conducted to
identify functional SNPs associated with these traits using GEMMA
software (v0.98.5) (Zhou and Stephens, 2012). Given heterogeneous
genetic architecture across traits, there were no standardized criteria for
determining the number of functional SNPs to be selected. For example,
for polygenic traits including growth, alkalinity tolerance, heat toler-
ance and swimming performance, which are regulated by numerous
micro-effect SNPs rather than a few major QTLs (Li et al., 2025a; Liu
et al., 2025; Zhang et al., 2023a), we initially selected approximately
500 SNPs with the highest ranked P-values based on the GWAS results.
However, for traits like sex determination and disease resistance, where
significant major QTLs were detected and most functional SNPs were
within 1000-bp distance (unpublished data), we modestly reduced the
number of selected SNPs to around 200. All GWAS-informative SNPs
were merged, and duplicates were removed, retaining only one SNP
within every 300-bp window. We set a suggestive significance threshold
of P-value <0.0001 to select SNPs for SNP array design.

2.3.2. Functional SNPs identification using selective sweep analysis
Selection signatures are genotypic markers shaped during evolu-
tionary adaptation under natural or artificial selection. Population
structure analysis of 1107 spotted sea bass samples revealed two major
genetic groups, primarily driven by differentiation between northern
and southern farmed populations. To ensure the effectiveness of LuXin-I
SNP array in germplasm resource management and population structure
identification, we conducted selective sweep analyses, including fixa-
tion index (Fst) and nucleotide diversity (6z) using VCFtools (v0.1.13)
(Danecek et al., 2011), to identify positively selected regions focused on
two main comparisons. First, since the wild and breeding populations
formed a single genetic cluster that overlapped with partially fast
growth strain, we aimed to identify genomic regions underlying the
divergence between these two major genetic groups (northern vs.
southern farmed populations). Second, as the northern farmed popula-
tion represents the fast growth strain, we specifically compared it
against wild populations to detect artificial selection signals potentially
related to growth performance. Candidate regions were defined as those
within the top 5 % of Fst values and the extreme 2.5 % of the 6z ratio
distribution. From these regions, all associated SNPs were merged, and
only one SNP per 10 kb window was retained to minimize redundancy.
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2.3.3. Functional SNPs identification based on impact effects

For categorizing the impact effects of SNPs, we firstly construct the
databases for reference genome of spotted sea bass
(JAYMHBO000000000) using “build” mode of SnpEff software (v5.0),
then we performed SNP functional annotation using “ann” mode of
SnpEff according to the annotated genomic locations (Cingolani et al.,
2012). Annotation results classified SNPs into 4 impact effects, including
HIGH, LOW, MODERATE and MODIFIER types based on their predicted
biological consequences. Of which, high-impact SNPs were defined as
variants that cause significant disruptions to protein structure or func-
tion, including stop gained, frameshift, and splice site variants, high-
lighting their crucial roles in genomic regions. Consequently, all high-
impact SNPs were prioritized for array inclusion due to their putative
roles in critical biological pathways.

A composite functional SNP set was generated by integrating three
types of functional SNPs, and only one SNP within each 300 bp window
was retained to eliminate redundancy and ensure adequate spacing
between SNPs. Finally, this comprehensive selection approach incor-
porated a total of 3393 functional SNPs that will enable accelerated
breeding progress.

2.4. Determination of background SNPs and probe design

To ensure an even distribution of physical distance and MAF values
of background SNPs across the genome, we first divided the final high-
confidence SNP database into five MAF bins: 0-0.1, 0.1-0.2, 0.2-0.3,
0.3-0.4, and 0.4-0.5. These MAF bins were selected to capture a broad
spectrum of allele frequencies, from rare to common variants, thereby
ensuring comprehensive coverage of genetic diversity within diverse
populations. This stratification enhances the utility of array in genomic
analyses and breeding applications by providing balanced representa-
tion across different allele frequency spectra. Due to the varying number
of SNPs within each MAF bin, with initial counts of 1,416,395,
1007,089, 493,439, 358,533 and 252,906 in the respective bins, we
selected background SNPs within each MAF bin using different window
sizes to maintain an even distribution of SNPs across the genome. Spe-
cifically, we retained only one SNP within every 35 kb, 30 kb, 20 kb, 15
kb, and 12 kb window for 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5
MAF bins, respectively. The selection of smaller window sizes for higher
MAF bins ensures that common variants are adequately represented,
while larger window sizes for lower MAF bins prevent excessive
redundancy of rare variants. However, several SNPs in different MAF
bins still exist in close physical distance in genome. Furthermore, we
merged all background SNPs and randomly retained one SNP within
each 10 kb genomic region, which could retain appropriate SNP
numbers for array development. Additionally, background SNPs located
within 300 bp of functional SNPs were further removed to avoid data
redundancy. Our approach effectively mitigates SNP density discrep-
ancies of different MAF bins and minimizes redundancies, ultimately
resulting in a total of 41,607 background SNPs that are evenly distrib-
uted across all chromosomes.

Finally, a total of 45,000 SNPs were selected for probe design. Each
probe was designed as a 110 bp double-stranded DNA sequence,
adhering to quality standards of 30 %-70 % GC content for background
SNPs and 20 %-80 % GC content for functional SNPs. Additionally,
probes were constrained to regions with five or fewer homologous se-
quences to ensure specificity. Three background SNPs were removed
due to probe design failures. The remaining probes were subsequently
optimized and adjusted based on genotyping results. Ultimately, the
“LuXin-I" liquid SNP array was developed, encompassing 44,997 target
SNPs using GBTS technology for spotted sea bass.

2.5. The assessment of genotyping performance for LuXin-I SNP array

To evaluate the genotyping accuracy and reliability of LuXin-I SNP
array for spotted sea bass samples with complex population contexts,
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two rounds of genotyping using the 45 K SNP array were conducted on
218 representative samples, encompassing 132 north samples and 86
south samples. Genomic DNA was extracted from the pectoral fins of all
individuals. After assessing DNA quantity and quality using a nucleic
acid analyzer (OSTC, China), high-quality DNA samples were utilized for
DNA library construction and sequencing at MolBreeding Biotechnology
Co., Ltd., Shijiazhuang. The genotyping process and hard filter using
GATK has been described in our previous study (Zhang et al., 2023a). To
evaluate the genotyping performance of LuXin-I SNP array for core
SNPs, genotype call rate, genotype missing rate were calculated using
VCFtools (v0.1.13), genotype concordance (GC) and the squared Pear-
son correlation coefficient of genotype dosage (R%) between the SNP
array and WGS data were calculated using BCFtools (v1.20). Further-
more, to ensure consistency and reliability across the entire dataset,
identical criteria were applied to evaluate the genotyping performance
of multiple single-nucleotide polymorphisms (mSNPs), which captured
in target genomic segments due to common features of GBTS technology
(Liu et al., 2022).

2.6. The application of LuXin-I SNP array in genetic improvement for
spotted sea bass

To evaluate the application potential of LuXin-I SNP array in genetic
improvement of spotted sea bass, we extracted all 130,563 mSNPs from
WGS data of an expanded cohort of 451 samples, which included the
initial 218 representative samples. Four growth traits including body
weight (BW), body height (BH), total length (TL) and body length (BL)
were recorded and detailed information were provided in Table S3. This
strategy enabled us to assess the effectiveness and applicability of both
the mSNP set and the full SNP set in a larger population without
incurring additional genotyping costs (Liu et al., 2022). The perfor-
mance of SNP array and WGS data was compared through population
structure analysis, GWAS, genetic parameter estimations, and GP. Ge-
notype data from 451 samples were filtered using Plink software (v1.90)
as following parameters: —-geno 0.05, —hwe le_s, and -maf 0.05,
resulting in 99,968 SNPs for the SNP array and 4,760,402 SNPs for the
WGS data.

To evaluate the ability of LuXin-I SNP array to accurately reflect the
underlying population structure compared to WGS data, a neighbor-
joining tree was constructed using genetic distances matrix calculated
with VCF2Dis (v1.45) (https://github.com/BGI-shenzhen/VCF2Dis). In
addition, principal component analysis (PCA) was conducted using
Plink, and the first two principal components (PC1 and PC2) were used
to delineate genetic groups. The GWAS analyses for four growth traits
were performed based on MLM using GEMMA (v0.98.5) (Zhou and
Stephens, 2012), the first two PCs and marker effect value were selected
as fixed effects, and polygenic effect value was integrated in MLM as
random effects to control for false positives. The results based on SNP
array and WGS data were compared to assess the effectiveness of the
SNP array in detecting trait-related SNPs.

To further validate the effectiveness of the SNP array in capturing
genetic variance associated with economic traits. The genomic rela-
tionship matrix (GRM) for both datasets was estimated using GCTA
(v1.94.0) with parameter: -make-grm (Yang et al., 2011). Heritability
() for growth traits was estimated as the formula: W= o‘gz/ (agz + 0‘62),
where og? represents the additive genetic variance and oe? is the residual
variance, the variance components were calculated by GCTA using
parameter: —reml. In addition, genetic correlation among traits was also
calculated using GCTA with parameter of “~reml-bivar”. To access the
application potential of LuXin-I SNP array in genomic selection,
genomic prediction (GP) for BW trait was conducted using five-fold
cross-validation with 5 replicates. Specifically, 451 samples were
randomly divided into training sets (n = 361) and testing sets (n = 50).
Of which, SVM model, one of machine-learning methods belonging to
kernel-based algorithms, was used to build GS model based on training
sets using the R package kernlab (v0.9-32) (Karatzoglou et al., 2004),
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then the GS model was used to calculate the genomic breeding values
(GEBVs) of testing sets. We built 6 different SNP sets with the numbers of
0.1k, 1k, 5k, 10k and 100 k. GWAS was performed in train sets to select
corresponding numbers of SNP based only on P-value. Furthermore,
predictive accuracies were defined as the average Pearson correlation
between actual phenotypes and GEBVs divided by the square root of h?
for BW trait.

3. Results and analysis
3.1. Population structure and genetic diversity analysis

WGS data were collected from both wild, breeding and farmed
populations, including 1107 individuals, to generate 3,528,641 high-
quality SNPs for the development of LuXin-I SNP array. To clarify the
genetic background and population stratification of 1107 individuals,
we conducted population structure and genetic diversity analysis
(Fig. 1). Principal component analysis (PCA) revealed that wild and
breeding populations collectively formed a single genetic cluster,
whereas farmed populations exhibited more complex genetic structures.
Notably, southern farmed samples formed a distinct genetic group
separated from other clusters along the first principal component (PC1),
which explained 40.75 % of the total genetic variance (Fig. 1A).
Northern farmed samples (representing fast growth strain) were further
subdivided into two genetic subgroups, supported by both PCA and
ADMIXTURE analysis as the optimal structure (K = 3) (Fig. 1B,
Table S4), with several individuals still clustering within the wild and
breeding populations. Furthermore, we estimated nucleotide diversity
() within wild, breeding, and farmed populations, as well as pairwise
fixation indices (Fst) between populations. Nucleotide diversity was
relatively consistent across groups, ranging from 1.452 x 107> to 1.506
x 1073, The farmed population showed the highest 7 value (1.506 x
1073), further supporting the genetic distinction between northern and
southern farmed populations. Genetic differentiation, measured by Fst,
was low between breeding and wild populations (Fst = 0.00497),
moderate between farmed and wild populations (Fst = 0.0180), and
highest between farmed and breeding populations (Fst = 0.0212),
indicating that farmed populations are more genetically differentiated
from their wild and breeding counterparts (Fig. 1C).

3.2. The statistical results of the core SNPs

Building upon the high-quality SNP set that effectively captured
population stratification and genetic diversity, we consider these SNPs
that are widely distributed across population, thus providing a repre-
sentative and unbiased genomic basis for subsequent marker selection to
design for LuXin-I SNP array. The whole array design and application
has been described in Fig. 2. Following an intensive filtering process and
probe design, 44,997 target SNPs including 3393 functional SNPs and
41,604 background SNPs were integrated in the SNP array (Table 1).
Detailed genotype data information including SNP_ID, chromosome,
position, and allele have been described in Table S5 and Table S6 for
functional and background SNPs, respectively. In addition, we have
provided detailed P-value of GWAS-informative SNPs, categorized by
their phenotype in Supplementary Table 5. Overall, target SNPs were
evenly distributed across the genome, with an average density of one
SNP per 13,838 bp, except for several high-density genomic regions on
chromosome 19 related to sex determination (Fig. 3A). The density and
distribution of target SNPs indicated the array’s ability to broadly
represent genetic diversity while targeting specific traits. Moreover, the
number of MAF values was 3817, 6120, 8844, 10396 and 15,820 for the
0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5 MAF bins, respectively
(Fig. 3B). In our analysis, we retained a certain number of SNPs with low
MAF values, considering that many crucial SNPs are often rare variants.
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Fig. 2. Design framework of the LuXin-I SNP array and flow chart of application scenarios in genetic improvement for spotted sea bass.

3.3. Characterization and summary of the LuXin-I SNP array

Genotyping was performed on 218 test samples using LuXin-I SNP

and chromosome lengths in the SNP array was shown in Fig. 4A. Each
chromosome contained approximately 1.87 K target segments and 5.44
K mSNPs, resulting in an average of 2.90 SNPs genotyped per target

array, successfully capturing a total of 130,563 mSNPs within 44,997 segment. The MAF distributions of core SNPs and mSNPs in the test

target genomic segments. The distribution of mSNPs, target segments,

samples were significantly different, with average MAF values of 0.304
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Table 1
Summary of target SNPs in each type for LuXin-I SNP array.

Types of target SNP in LuXin- ~ SNP
1 SNP array

Sample Data source

number size

(Chen et al., 2023; Liu

Background SNPs 41,604 1107 et al., 2025; Zhang et al.,

2023a)
Growth related 441 514 (Zhang et al., 2023a)
Sex determination related 174 514 Unpublished
Nocardia seriolae resistance 19 450 Unpublished
related
Heat tolerance related 445 493 (Liu et al., 2025)
Alkalinity tolerance related 444 287 (Zhang et al., 2025a)
Swimming performance 452 446 (Li et al., 2025a)
related
Selective signature between
new strains and wild 50 530 Unpublished
populations
Selective signature between
northern and southern 315 1107 Unpublished
populations
(Chen et al., 2023; Liu
High impact in genome 1053 1107 et al., 2025; Zhang et al.,

2023a)

for core SNPs and 0.216 for mSNPs, respectively (Fig. 4B, Table S7).
This indicates that core SNPs possess higher polymorphism rates
compared to mSNPs. Additionally, the SNP location of core SNPs and
mSNPs in genomic region were basically identical (Fig. 4C). Although
most core SNPs and mSNPs were located in intergenic or intronic re-
gions, a higher proportion of core SNPs (0.0564) and mSNPs (0.0460) in
exon regions was observed in array data compared to WGS data (0.0269)
from our previous research (Zhang et al., 2023a). These results suggest
that SNP genotyping data using LuXin-I SNP array could provide
adequate coverage across different genomic regions.

3.4. The evaluation of genotyping for the LuXin-I SNP array

Four metrics including genotype call and missing rate, GC and R?
values were used to assess the genotyping performance of LuXin-I SNP
array on 218 test samples. A remarkable genotype performance for core
SNPs was observed, with locus calling rates ranging from 96.90 % to
99.70 %, and an average of 99.48 % (Fig. 5A, Table $8). The GC and R?
values for core SNPs between array data and WGS data were 94.57 %
and 94.02 %, respectively (Fig. 5A, Table $8). In addition, the genotype
call rate for mSNPs was 99.52 %, with GC and R? values of 94.10 % and
94.80 %, respectively (Fig. 5B, Table S8). The genotype missing rates of
core SNPs in the test samples indicated that 83.26 % of SNPs had no
missing genotypes, and only 1.05 % of SNPs had a genotype missing rate
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greater than 0.1 (Fig. 5C). Although the SNP array detected a higher
number of mSNPs compared to core SNPs, a lower percentage (0.40 %)
was observed for mSNPs that genotype missing rates greater than 0.1
(Fig. 5D). These results indicate that most target segments effectively
capture both core SNPs and mSNPs. Overall, the genotyping results
demonstrate that LuXin-I SNP array is a highly accuracy and reliability
genotyping tool for spotted sea bass.

3.5. Population structure analysis

In this study, 451 samples derived from northern and southern
cultivated populations were selected to assess the efficacy of LuXin-I
SNP array in genetic improvement for spotted sea bass. Phylogenetic
trees constructed from both SNP array and WGS data indicated that the
cultivated spotted sea bass samples could be significantly divided into
two genetic groups: North and South (Fig. 6A). PCA results also sup-
ported the classification of samples into two subpopulations (Fig. 6B).
These population structure analyses demonstrate the superior perfor-
mance of the LuXin-I SNP array in characterizing the population struc-
ture of spotted sea bass.

3.6. The comparison of genome-wide association results of growth traits

Given the substantial difference in variant density between LuXin-I
SNP array (99,968 SNPs) and WGS data (4,760,402 SNPs), we applied
platform-specific thresholds to enable a comparative analysis of detec-
tion power: 0.05/N (5.00 x 1077) for the SNP array and 1/N (2.10 x
1077) for WGS data, where N represents the total number of SNPs
analyzed per platform. It is important to note that these thresholds were
used for comparative purposes and do not imply strict genome-wide
significance. Our objective was to evaluate the relative performance of
the SNP array against WGS in detecting trait-associated signals, rather
than to identify novel trait-related SNPs. For TL, BL and BW traits
(Fig. 7A-C, Table S9), almost all trait-related SNPs identified in the WGS
data were also detected by the SNP array. Although several SNPs,
including SNP:1-8,192,599, SNP:1-8,192,639 and SNP:13-20,968,525,
were not directly detected using SNP array, nearby SNPs
(SNP:1-8,193,268 and SNP:13-20,968,579) were also identified. These
proximity SNPs could also be annotated to the same genes, thereby
maintaining the association with the respective traits. However, the SNP
array exhibited relatively poor performance for the BH trait (Fig. 7D,
Table S9), as several SNPs on chromosome 4 identified through WGS
data were not genotyped by the SNP array. Overall, the evenly and
widely spaced mSNPs in LuXin-I SNP array provide a moderate level of
detection power for GWAS targeting economically important traits.
However, the lower SNP density inherently limits the enough detection
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Fig. 3. (A) Genome-wide distribution of 44,997 target SNPs across 24 chromosomes. Different colors represent the corresponding number of SNPs within 1 Mb
distance according to the legend. (B) Minor allele frequency (MAF) distribution histogram of target SNPs in the LuXin-I SNP array.
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power compared to WGS data. Therefore, continuously incorporating
new functional SNPs is essential to enhance the detection capabilities of
LuXin-I SNP array. This ongoing enhancement will ensure that LuXin-I
SNP array remains effective tools for identifying meaningful genetic
associations in spotted sea bass.

3.7. Genetic parameter estimations and genomic prediction (GP)

The heritability (k%) estimation and genetic correlations for growth
traits in 451 samples were calculated using SNP array and WGS data in
spotted sea bass (Table 2). Heritability estimations obtained from SNP
array data were 0.581, 0.579, 0.592 and 0.550 for TL, BL, BH and BW
traits, respectively. These estimates were slightly higher than those
derived from WGS data, which were 0.572, 0.565, 0.571, and 0.534 for
TL, BL, BH, and BW, respectively. In addition, high genetic correlations
(0.694-0.992) for growth traits were observed and the results between
SNP array and WGS data were basically identical. These results indicate
that SNP array data are sufficient for estimating genetic variance com-
ponents related to growth traits in spotted sea bass. Furthermore, pre-
dictive accuracies for BW trait at different SNP numbers were compared
between SNP array and WGS data. We observed that predictive accu-
racies based on SNP array data (ranging from 0.686 to 0.813) were
consistently higher than those based on WGS data (ranging from 0.643
to 0.681) across various SNP numbers. This trend was particularly
pronounced when using 0.1 K SNPs (Fig. 8 and Table $10). These
findings indicated that LuXin-I SNP array is a more effective tool for
selection breeding than WGS data in spotted sea bass.

4. Discussion

Reducing genotyping costs while obtaining high-quality genotype
data remains a critical challenge in aquaculture breeding and genetic
research. Liquid SNP array technology offers an efficient genotyping
strategy and has been successfully developed for several aquaculture
species. This technology enables the identification of functional genes
and facilitates the selection and improvement of desirable traits such as
growth rate, disease resistance, and environmental adaptability (Li
et al., 2025b; Liu et al., 2022; Zhou et al., 2024b).

Spotted sea bass, a commercially important mariculture fish in
China, has historically lacked high-quality varieties. To address this, we
have focused on utilizing genetic resources and genomic selection to
improve economically important traits in spotted sea bass over recent
years. However, our previous research relied exclusively on WGS data,
which poses significant genotyping cost challenges for future selection
breeding programs that require genotyping large numbers of in-
dividuals. Therefore, developing a liquid SNP array is an urgent neces-
sity to facilitate molecular design and breeding with high accuracy and
efficiency. In this study, we developed a high-throughput 45 K liquid
SNP array, named as “LuXin-I", based on resequencing data using GBTS
technology, and evaluated its genotyping performance and application
potential in the genetic improvement of spotted sea bass. To the best of
our knowledge, this study represents the first development and appli-
cation of a liquid SNP array for spotted sea bass.

Here, WGS data from 1107 samples were selected for SNP array
development. We acknowledge the limitation regarding pedigree and
parental sex information. For wild individuals, parental data was un-
available as fish samples were captured directly from natural marine
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environments. Practically, sexual identification of adult spotted sea bass
cannot be reliably achieved through non-destructive methods during
non-breeding periods, and the long breeding season (October-January)
introduces breeding inconsistency for each parent fish. Furthermore, as
an important mariculture fish in China, systematic genetic breeding
programs for spotted sea bass remain at a nascent stage. Given the
operational constraints of large-scale breeding stock management
(typically >200 fish per pound) and infrastructure limitations, the
commercial breeding strategy mainly employs mass selection. Conse-
quently, we are currently unable to provide the number of female and
male parents for current experiment fish and pedigree information for
experimental samples. In the future, we will accurately determine
parent-offspring relationships based on genotype data to advance
genomic selection. In addition, population structure and genetic di-
versity analysis based on 3,528,641 high-quality SNP set clearly
revealed comprehensive genetic background and population stratifica-
tion for wild, breeding and farmed populations (Fig. 1). These further
indicated that high-quality SNPs effectively capture common genetic
variation present in diverse populations of spotted sea bass without
introducing significant population bias, thus providing a representative
and unbiased genomic basis for subsequent marker selection.
Following the principles of evenly genomic distribution and appro-
priate MAF ranges, we performed a rigorous filtering process to select
41,607 representative SNPs as background SNPs. Additionally, based on
our research including both published and unpublished data, we
incorporated 3393 functional SNPs related to economically important
traits, selective signatures, and high-impact genomic regions into the

array design. After excluding three background SNPs due to probe
design failures, a total of 44,997 customized SNPs were selected as
target SNPs for the development of LuXin-I SNP array. Genotyping re-
sults demonstrated a significant increase in the number of detectable
mSNPs (130,563), with an average of 2.9 times more SNPs detected per
target genomic segment (44,997), highlighting the high SNP content of
LuXin-I SNP array (Fig. 4A). The distribution of MAF values revealed a
higher site polymorphism for core SNPs (0.304) compared to mSNPs
(0.216), as expected, given the strict filtering applied to core SNPs, while
mSNPs were less stringently considered (Fig. 4B). Furthermore, the
proportion of core SNPs and mSNPs across different genomic regions
was nearly identical (Fig. 4C), with a higher percentage of SNPs located
in exon regions compared to WGS data, further demonstrating the
representativeness of SNP data genotyped by LuXin-I SNP array. High
individual calling rates were observed for both core SNPs (99.48 %) and
mSNPs (99.52 %), with low SNP missing rates (1.05 % and 0.40 %,
respectively), highlighting the robustness of LuXin-I SNP array as a high-
throughput genotyping tool (Fig. 5). These excellent genotyping per-
formances are consistent with those of liquid SNP arrays used in aqua-
culture fishes such as leopard coral grouper (Zhou et al., 2024a), large
yellow croaker (Wang et al., 2023) and tiger pufferfish (Li et al., 2025b).
However, the GC and R? between SNP array and WGS data ranged from
94.10 % to 94.80 % (Fig. 5), which were relatively lower compared to
those of SNP arrays for large yellow croaker (0.963) (Wang et al., 2023)
and mud crab (0.954) (Ye et al., 2025). These observed concordance
differences may be attributed to instances where homozygous genotypes
being called as heterozygous or were there cases of opposing
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homozygous genotypes. We hypothesize that the uneven sequencing
depth of the WGS data for several test samples, which ranged from 7.6 x
to 31.56x (Table S11), may have contributed to genotype errors. In
contrast, the SNP array employs targeted capture and high-depth
sequencing of specific genomic segments, resulting in more reliable
genotype calls. Despite these minor discrepancies, the overall high
concordance reaffirms the accuracy and reliability of the LuXin-I SNP
array for high-throughput genotyping performance.

Elucidating population structure, understanding the genetic basis of
traits, and predicting GEBV for target traits are critical components of
selection breeding programs for spotted sea bass. To assess the potential
of LuXin-I SNP array for genetic improvement in growth traits, we sys-
tematically compared its performance across several key applications:
population structure analysis, GWAS, genetic parameter estimations and
GP. These comparisons offer valuable insights into the array’s utility for
breeding programs focused on improving the performance of economi-
cally important traits. The ability to accurately distinguish population
assignments is crucial for managing genetic diversity and preventing
inbreeding in aquaculture populations (Ciezarek et al., 2022). In our
study, both the neighbor-joining tree and PCA, based on SNP array data,
demonstrated identical performance to WGS data, effectively revealing
clear genetic divergence between the northern and southern populations
of spotted sea bass (Fig. 6). However, the SNP array data exhibited lower
resolution than WGS in detecting trait-associated SNPs using GWAS
(Fig. 7). Although the mSNPs genotyped by the array provide adequate

genome coverage, its reduced marker density inherently constrained its
ability to capture and resolve certain significant SNPs at a finer scale.
Consequently, this limitation necessitates continuous updates to incor-
porate essential functional SNPs or the refinement of probe designs to
enhance the detection capabilities of LuXin-I SNP array.

The variance components and h? for growth traits of spotted sea bass
were first estimated using SNP information from both SNP array and
WGS datasets. The high estimated h? values, ranging from 0.534 to
0.592 (Table 2), confirm the substantial genetic basis of these traits,
supporting the applicability of genomic selection for spotted sea bass
breeding (Yu et al., 2023). Crucially, genetic correlation derived from
SNP array data showed basically consistency with WGS results (Table 2).
This consistency further supports the reliability of SNP array data for
quantifying genetic parameters for growth traits, making it a feasible
tool for selection breeding programs. Notably, SNP array data demon-
strated higher predictive accuracies for BW trait than WGS data at
various marker numbers, where a minimal panel of 100 GWAS-
informative SNPs achieved the maximum prediction accuracy of 0.602
for BW trait of spotted sea bass (Fig. 8), which is significantly higher
than that using WGS data (Zhang et al., 2023a). Genomic prediction
accuracy serves as a crucial evaluation metric in GS, directly deter-
mining the efficiency of genetic improvement programs (Shan et al.,
2021). The enhanced predictive performance observed in this study
compared to previous investigations can be primarily attributed to more
test samples, high genetic relatedness, and diverse population structure
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Table 2

Heritability (h?) and genetic correlation for growth traits using genomic rela-
tionship matrix (GRM), and phenotypic correlation for growth trait using
Pearson’s chi-squared test. Heritability is on the diagonal in bold; Genetic and
phenotypic correlations are below the diagonal and above, respectively.

Group h+ TL BL BH BW
SE
L 0.581 + 0.992 + 0.705 + 0.797 +
0.0819 0.00431 0.0684 0.0592
0.579 + 0.694 + 0.836 +
SNP array BL 0.981 0.0840 0.0695 0.0537
data 0.592 + 0.915 +
BH 0.793 0.797 0.0800 0.0388
0.550 +
BW 0.830 0.833 0.857 0.0869
- 0.572 + 0.989 + 0.712 + 0.789 +
0.0853 0.00353 0.0732 0.0602
0.565 + 0.701 + 0.825 +
BL 0.981 0.0877 0.0703 0.0556
WGS data
BH 0.793 0.797 0.571 + 0.912 +
’ ’ 0.0836 0.0268
0.534 +
BW 0.830 0.833 0.857 0.0906

10

as described in (Liu et al., 2025), which is sufficient to estimate SNP
effects and accurately predict GEBV of validation individuals. These
findings underscore the critical importance of optimized reference
population design to improve GS efficacy for growth traits in future
spotted sea bass breeding program. Notably, the higher heritability es-
timates, and predictive accuracies obtained with the SNP array
compared to the WGS dataset are reasonable and likely reflect the
advantage of using a smaller set of representative SNP markers. This
effect may be attributed to sufficient genetic information though rela-
tively lower marker density, which naturally reduced model complexity
and lower multicollinearity among markers relative to the extensive
WGS SNP set, particularly beneficial for limited sample sizes. These
situations were also observed in the comparison between InDel and SNP-
based GP, where InDel markers have equivalent power to SNP markers
in genetic analyses, while obtained a higher predictive accuracy due to
lower marker density than SNP (Zhang et al., 2024). Overall, the better
performance in genetic parameter estimations and genomic prediction
of LuXin-I SNP array confirm that it could be used as a cost-effective tool
for genomic selection in breeding programs of spotted sea bass.
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5. Conclusion

In this study, the first 45 K liquid SNP array for spotted sea bass,
named as “LuXin-I", was developed based on 1107 WGS data using GBTS
technology. LuXin-I SNP array integrates 41,604 genome-wide back-
ground SNPs with uniform genomic distribution and appropriate MAF
ranges, and 3393 functional SNPs associated with economically
important traits, selection signatures, and high impact genomic regions.
In addition, LuXin-I SNP array demonstrates excellent genotyping per-
formance and application potential in population structure analysis,
GWAS, genetic parameter estimations, and GP, achieving higher accu-
racy to WGS data. As an open-access, cost-effective and reliable geno-
typing platform, LuXin-I array enables large-scale genotyping for
spotted sea bass and precise estimation of GEBV in genomic selection,
significantly advancing genetic improvement for spotted sea bass.
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