

Regulation of transforming growth factor beta 1 in the ovary of ovoviparous black rockfish (*Sebastes schlegelii*)

Xiao Jing, Likang Lyu, Chenpeng Zuo, Jianshuang Li, Xiaojie Wang, Jing Yang, Tianyu Jiang, Yun Li, Haishen Wen, Xin Qi ^{*}

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China

ARTICLE INFO

Keywords:

Transforming growth factor beta 1
Ovary
Black rockfish
Immune

ABSTRACT

Transforming growth factor beta 1 (TGF- β 1), a multifunctional secreted polypeptide cytokine, has been reported to play crucial roles in pregnancy process of mammals, including immune tolerance and embryonic development. However, less is known in Pisces. Aimed to figure out the molecular mechanism underlying TGF- β 1 functions, black rockfish (*Sebastes schlegelii*), an ovoviparity teleost, which process the sperm storage and gestation periods, was employed as the research model. In the present study, we found that *tgfb1* among four *tgfb* isoforms was highly expressed and localized in ovary. The recombinant TGF- β 1 (rTGF- β 1) was mainly involved in immune response, signal transduction, angiogenesis and cell death by analyzing transcriptome of ovarian cells. The current results reveal the pivotal role of TGF- β 1 in black rockfish ovary and provide novel insights into cytokines in the pregnancy of ovoviparity teleost.

1. Introduction

Reproduction is one of the critical biological events in the life cycle of living organisms including fish. To achieve the success of reproduction, ensuring the existence of the species, fish have evolved reproductive strategies from oviparity, ovoviparity to viviparity (Muchlisin, 2014). As an intermediate strategy between viviparity and oviparity, ovoviparity shares the yolk-based nutrition of oviparity while featuring internal fertilization to viviparity (Lodé Thierry, 2012). In addition, ovoviparous teleost also shows similar pregnancy characteristic to mammals, including the immune system variation to the semiallograft, angiogenesis, umbilogenesis and placentation. For a pregnancy to be successful, the maternal immune system needs to be precisely directed into a state of tolerance to avoid rejecting the semi-allogeneic fetus (Svensson-Arvelund et al., 2015). Therefore, studies have focused on how cytokines influence the mother-fetus, and impact the success or failure of pregnancy by immune cells and cytokines coordinating with each other (Raj Raghupathy and Jroslaw Kalinka, 2008). Among the numerous cytokines, transforming growth factor beta (TGF- β) plays a considerable role in regulating the immune physiological processes of pregnancy, including essential events such as in mammals of embryonic implantation, trophoblast invasion, placental development, and fetal growth (Wen et al., 2023).

TGF- β s, conserved in the animal kingdom, is considered to have appeared from the early days of metazoan evolution, which are known in mammals (TGF- β 1/2/3), in birds (TGF- β 2/3/4), in amphibians (TGF- β 2/5) and a novel TGF- β 6 first found in gilthead sea bream (*Sparus aurata*) (Huminiecki et al., 2009; Hinck et al., 2016; Funkenstein et al., 2010). TGF- β 1, the most prevalently and diversely expressed cytokine, is vital for maintaining immunological homeostasis, sustaining immune cell functions, and modulating immune cell differentiation (Clark and Coker, 1998). It has been shown that maternal first trimester TGF- β 1 levels to be higher in pregnancies, which impedes maternal immune cell activity and reduces the risk of immune-mediated fetal reaction (Hernandez-Valencia et al., 2001; Shooner et al., 2005). In mice, TGF- β 1 was found throughout pregnancy and affected the outcomes of pregnancy as well as increasing the fecundity rate and live birth numbers (Kay et al., 2021). Across several biological processes, TGF- β 1 also serves as a multifunctional cytokine in cell proliferation, differentiation, migration, and apoptosis. TGF- β 1 has been proved in both porcine and hen to mediate the states of granulose cells (Li et al., 2021; Johnson et al., 2004). However, the effects of TGF- β 1 on proliferation or apoptosis are highly dependent on the cell type and context. TGF- β 1 was found to inhibit the proliferation of primordial cells in fetal mouse ovary (Wang et al., 2014). In bovine, TGF- β 1 promoted apoptosis of granulosa cells during time in culture and reduced entry into the proliferative

* Corresponding author.

E-mail address: qx@ouc.edu.cn (X. Qi).

phase of the cell cycle (Zheng et al., 2009). Besides, recombinant goldfish TGF- β induced the proliferation of a goldfish fibroblast cell line, which was the first functional report of TGF- β in teleost (Haddad et al., 2008a). TGF- β 1 exerted an inhibitory on the proliferation of peripheral blood lymphocytes in grass carp (Yang et al., 2012).

Black rockfish (*Sebastes schlegelii*), which belongs to the *Sebastes* genus in the *Sebastes* family, has an ovoviparous reproductive pattern. The long-term sperm storage and asynchronous gonadal development may have developed from adaptive evolution (Wang et al., 2021). In black rockfish, spermatogenesis begins in July and the sperm matures in December or the following January with individual difference. After mating, the sperms are passed into female ovary by urogenital papillae and stored in the ovary cavity during the vitellogenesis. Oocytes mature and activate the sperms for fertilization around in April. After in situ fertilization, embryonic development relies on the yolk and maternal nutrients. Following a gestation for about one month, the females give birth to fries. However, during the one-month pregnancy, the variation of immune system, angiogenesis and functional change from the ovary to the uterus-like status may affect the final destiny of the embryos. We hypothesized that TGF- β 1, as a multifunctional cytokine, plays a regulatory role in the ovary of black rockfish. To test this hypothesis, we first investigated the expression pattern and ovary localization of TGF- β 1. We then performed transcriptomic analysis on ovarian cells treated with recombinant TGF- β 1. Our findings demonstrated, for the first time, the function of TGF- β 1 in an ovoviparous teleost and provided evidence supporting the essential roles of cytokines in the pregnancy.

2. Materials and methods

2.1. Animals and Ethics statement

All animal experiments were reviewed and approved by the Animal Research and Ethics Committees of Ocean University of China (Permit Number: 20141201). This experiment did not involve endangered or protected species. All experiments were performed in accordance with the relevant guidelines and regulations.

Black rockfish were obtained from an aquaculture population in marine cages offshore of Penglai (37.6°N, 120.8°E), located in the northern Yellow Sea, Shandong Province, China. Prior to sampling, the fish were anesthetized with 100 ng/mL MS-222 (3-aminobenzoic methanesulfonate acid). In total, three adult females were sampled for tissue distribution analysis in December 2021. Separately, to investigate *tgb* expression patterns across the reproductive cycle of black rockfish (Wang et al., 2021), ovarian tissues were collected from different individuals at representative stages, including previtellogenesis stage (PV, September 2021), vitellogenesis stage (V, December 2021), mature stage (M, April 2022). Additional stages from May to June were categorized based on fertilization and parturition processes, including fully mature but unfertilized stage (MM, LM), fertilized stage (F), sarcomere stage (S), before parturition stage (Pb), during parturition stage (Pd), after parturition stage (Pa) (Zheng et al., 2023; Yan et al., 2023). Three female black fishes were selected for each stage. Parts of the ovary tissue were fixed in 4 % paraformaldehyde for *in situ* hybridization.

2.2. RNA extraction, reverse transcription, and qPCR

Total RNA was extracted from various tissues and ovaries in different developmental stages in black rockfish using TRIzol reagent (Invitrogen, USA) according to the manufacturer's instructions. Concentrations and quality of the RNA were assessed by a Biophotometer (OSTC, China) and 1 % agarose gel electrophoresis. Complementary DNA (cDNA) was prepared using the *Evo M-MLV* RT Kit with gDNA Clean for qPCR (Accurate Biology, China).

qPCR was performed using the ChamQTM SYBR Color qPCR Master Mix (High Rox Premixed) kit (Vazyme, China) following the reagent instructions. The threshold circulation (C_T) values were measured three

times for each sample, and 18s (KF430619.1) was selected as an internal reference gene. The relative expression level of the genes was calculated using the $2^{-\Delta\Delta C_T}$ method. The primers for qPCR are shown in Table 1.

2.3. Molecular cloning and sequence analysis

Based on the genome (CNA0000824) and transcriptome date (PRJNA573572), the open reading frames (ORFs) of *tgb1* was predicted in black rockfish and the cloned primers for the full-length cDNA sequence are shown in Table 1. All primers used in the present study were designed by Primer 5 software (Premier, Canada). The 2 \times Phanta Max Master Mix (Dye Plus) was used for cloning and ovary cDNA was used as the template. The PCR product was purified and cloned into the pCE2 TA/blunt-Zero vector (Vazyme, China) for sequencing.

The signal peptide was predicted using the signal 6.0 program (<https://services.healthtech.dtu.dk/services/SignalP-6.0>). The pro-peptide and

Table 1
Primers sequences used for orf cloning, ish, vector construction and qpcr.

Primers	Sequences (5' - 3')
Primers for ORF clone	
<i>tgb1</i> -orf-F	ATGAAGCTGGTGGCTTGATGC
<i>tgb1</i> -orf-R	TTAGCTACACTTGCAGGACTTC
Primers for ISH	
<i>tgb1</i> -ISH-F	CGCATTAGGTGACACTATAGAA
	GGCCTAGAGATACGGGACAGCG
<i>tgb1</i> -ISH-F	CCGTAATACGACTCACTATAGGA
	GACATGGTGCTTGTATCGCCT
Primers for pET-N-His vector	
pET- <i>tgb1</i> -F	GTAGCGGTTCCGGTTCTCGACGG AGACGAAAGACACC
pET- <i>tgb1</i> -R	GCTGAATTCGATATCGGATTAGCT
	ACATTTCGACGACTTCAC
Primers for qPCR	
18s-F	CCTGAGAAACGGCTACCATC
18s-R	CCAATTACAGGGCTCGAAAG
<i>tgb1</i> -F	TAGGGGAGACACGGGACTTT
<i>tgb1</i> -R	TGCTCTACAAACAGCACGAGG
<i>tgb2</i> -F	CGACTCTGTAATGGGGTCG
<i>tgb2</i> -R	CCTGGACACTCAGTCCACAC
<i>tgb3a</i> -F	GGAGCACTAGTTGGCATCGT
<i>tgb3a</i> -R	ACTGTCCTGACACTTTTC
<i>tgb3b</i> -R	GCATCGTCAGTAGTCCGCTT
<i>il6</i> -F	GCTCTGTTGCTGTGCTC
<i>il6</i> -R	CCACACCTCCCTCACCT
<i>tnfa</i> -F	AAGGAGAACACAACCTGCC
<i>tnfa</i> -R	AGTTGACCTGGAAAGACGCT
<i>il17c</i> -F	GCAGAGCAGGTGTTCTCA
<i>il17c</i> -R	CTAGGGTGGAGACTTGGCTC
<i>dll3</i> -F	GACCTGGAGACCGTGAACAA
<i>dll3</i> -R	GAGGGACGATGATGGACGAG
<i>cd40</i> -F	CCAGAATGTCGTCCTCCAGC
<i>cd40</i> -R	GTGCTTCGTTCTGTCITGCT
<i>il1b</i> -F	TGATGGGGACTTCAATCTGT
<i>il1b</i> -R	AGCAGCAGATAAGCGCAAGA
<i>egr2</i> -F	ACATCGTCTCGGGCATCTC
<i>egr2</i> -R	CGCAGCCAGATGAGGAGTAA
<i>ptgs2</i> -F	GGAGGAGTTCTATGGGCACG
<i>ptgs2</i> -R	TGGGGTTCCATTAAAGCCC
<i>mmp13</i> -F	ACCCAAACCCGAGGAAAGTG
<i>mmp13</i> -R	CCATTCAAAGCCCACATCCG
<i>il34</i> -F	GAAGACGCTCAACAACAGCC
<i>il34</i> -R	TCCAACCCCTCCACCTGTAA
<i>il10</i> -F	TGTCGGTTCTGGAGTCCTT
<i>il10</i> -R	TTCATGGTGTGGCAGGCAA
<i>fas</i> -F	ACCTGTTGCTGTGTTGGAGC
<i>fas</i> -R	ACAGGGTTCTGACACCTCTA
<i>mafb</i> -F	AAGTTCCGGCTGAAGAAGGA
<i>mafb</i> -R	GTATCCAGAACCCGTCGCTC
<i>kif11</i> -F	GGAGGTGATCGTAAGAC CG
<i>kif11</i> -R	ATGGGCAACAAACACTCCT
<i>klc</i> -F	CCAGAGCACACGAGAAGGAG
<i>klc</i> -R	AGGTTGTGTTCACTGTCGGG

mature peptide were predicted by the conserved domains search (<http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi>). The 3D structure of mature peptide dimerize was modeled using SWISS-Model. Multiple alignments of several species were generated by the Clustal X software. The phylogenetic tree was constructed with the neighbor-joining method using MEGA11. The values on the tree represent bootstrap scores of 1000 iterations, indicating the credibility of each branch.

2.4. In situ hybridization (ISH)

Following the manufacturer's instructions, the $2 \times$ Phanta Max Master Mix (Dye Plus) kit was used for PCR. The PCR product was used as the template to synthesize antisense and sense RNA probes in vitro using the DIG RNA Labeling Kit (SP6/T7) (Roche, Switzerland). Ovaries at different developmental stages were fixed in 4 % paraformaldehyde followed by paraffin embedding. Serial sections (7 μ m) were prepared using a microtome (Leica, Wetzler, Germany). ISH was performed as previously reported (Lyu et al., 2022).

2.5. Recombinant expression of TGF- β 1

The cDNA region encoding mature peptide of TGF- β 1 was amplified using primers with overlapping sequences, and the PCR product was subcloned into a pET series expression vector. The recombinant expression vector was transformed into *E. coli* Rosetta and cultured in Luria Broth (LB) medium supplemented with 100 μ g/mL ampicillin and 33 μ g/mL chloramphenicol. Protein expression was induced with 0.6 mM IPTG at 37 °C for 5–6 h. Following cell harvest by centrifugation, lysis was performed by sonication. The recombinant TGF- β 1, expressed as inclusion bodies, was isolated from the pellet, denatured, and purified using standard washing and solubilization procedures. Refolding was achieved through gradual dilution at 4 °C to facilitate the restoration of native conformation. The solute of the fully renatured protein of TGF- β 1 was transferred to PBS by ice bath dialysis. The concentration of TGF- β 1 protein was determined by Bradford Protein Assay Kit (Beyotime Biotechnology, China). The protein was mixed with the SDS-PAGE Sample Loading Buffer (Beyotime Biotechnology, China) and incubated at 95°C for 10 min to denature. The SDS-PAGE was then carried out and dyed using Coomassie Blue Fast Staining Solution (Beyotime Biotechnology, China). The remaining protein of TGF- β 1 was frozen by liquid nitrogen and stored in –80°C.

2.6. Culture of ovarian matrix cells

Ovaries were collected from euthanized developing and pregnant female black rockfish. After dissection, the ovarian parietal membrane, along with embryos or oocytes, was carefully removed under a stereomicroscope. The remaining tissue was minced into small fragments and enzymatically digested with trypsin (biosharp, China) for 20 min. Digestion was terminated by adding an equal volume L15 (G-Clone, China) complete medium with 15 % fetal bovine serum (FBS) (G-Clone, China) and 1 % penicillin–streptomycin–gentamicin (Absin, China). The cell suspension was centrifuged at 400 g for 5 min, and the supernatant was discarded. The resulting pellet was resuspended in complete medium and seeded onto six-well plates. Ovarian cells were prepared from three fish and for each fish, three technical replicates were randomly assigned to wells. Cells were cultured at 25 °C in a CO₂-free incubator for 48 h, the L15 medium without FBS but containing 1 % penicillin–streptomycin–gentamicin concentration was used to culture the cells for 12 h. After low-transcription conditions, the complete medium with PBS (solvent control, n = 3), rTGF- β 1 (final concentration: 50/125/250 ng/mL, n = 3) was used to treat cells for 6 h. Subsequently, the cells were harvested for RNA extraction.

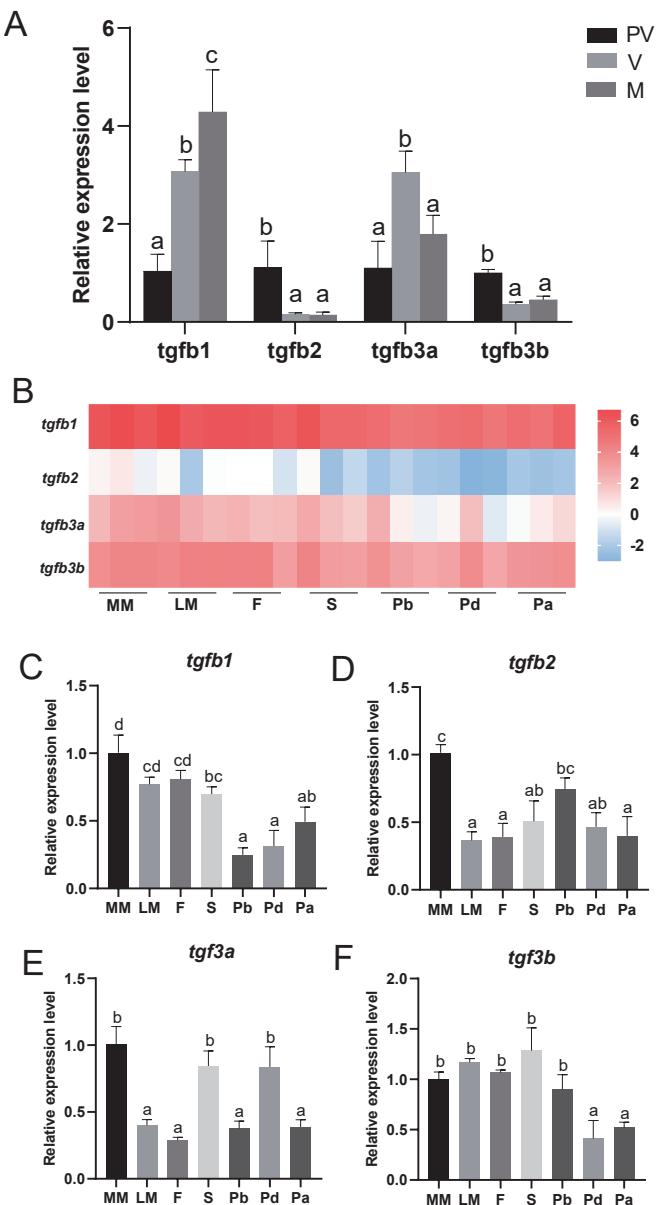
2.7. RNA-seq analysis

RNA isolation from cell samples treated with PBS and 250 ng/mL TGF- β 1 was performed as described previously. Qualities and concentrations of total RNA were evaluated by a Nanodrop (Thermo Fisher Scientific, USA) and Agilent 2100 bioanalyzer system (Agilent Technologies, USA). The RIN (RNA Integrity Number) value of each sample was above 9.0. A total of 6 sequencing libraries were constructed by the NEBNext ultraTM RNA Library Prep kit for Illumina (NEB, USA) according to the manufacturer's instructions. The samples were sequenced on an Illumina Hiseq X Ten platform, and 150-bp paired-end reads were generated.

The transcriptomic data were removed reads with low quality or reads containing poly-N. The cleaned reads were aligned to the reference *Sebastodes Schlegelii* genome (PRJNA516036) with histat2 (Kim et al., 2015). The analysis of quantification was accomplished with the StringTie package (Pertea et al., 2016). The multiple mapped reads were removed, and the count of unique mapped reads and FPKM (Fragments Per Kilobase Per Million) were retrieved, which were standardized using previous reference (Anders et al., 2015). Statistical analysis of transcripts was based on the DESeq2 package and the differentially expressed genes (DEGs) were identified as p-value < 0.05 and $|\log_2(\text{fold change})| > 1$. DEGs annotation was mapped to the reference genome of *Sebastodes schlegelii*. Thereafter, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were performed by the clusterProfiler R package with the p-value threshold < 0.05 (Götz et al., 2008; Kanehisa et al., 2017). The predicted protein–protein interaction (PPI) network was analyzed and visualized by Cytoscape v3.10.1.

2.8. Statistical analysis

All data are expressed as the mean \pm standard error of the mean (SEM). Statistical analysis was performed by one-way ANOVA followed by Tukey-HSD multiple range tests and differences were considered significant at $P < 0.05$. Pearson correlation analysis was performed, and the coefficient of determination (R^2) was calculated to evaluate the consistency between RNA-seq and qPCR results. All statistical processes and graphs were generated with SPSS20.0 (SPSS, USA) and GraphPad Prism 9 (GraphPad Software, USA).


3. Results

3.1. Expression patterns of *tgfb* isoforms in different stages

Four genes *tgfb* isoforms were identified from the genome and transcriptome of black rockfish. The qPCR results showed that the expression level of *tgfb1* was significantly increased in developing ovary and the highest level was detected when oocyte maturation (Fig. 1A). Based on transcriptomic data in early (PRJNA820964) and late (PRJNA886856) pregnancy, the $\log_2(\text{TPM} + 1)$ of *tgfb1* was higher than *tgfb2*, *tgfb3a*, *tgfb3b* (Fig. 1B). The relative expression level of *tgfb1* was significantly lower before parturition compared to both the oocyte maturation and early pregnancy stages (Fig. 1C). In contrast, *tgfb2* expression remained stable across gestational and parturition stages (Fig. 1D). Notably, *tgfb3a* exhibited elevated expression levels throughout pregnancy and parturition (Fig. 1E), whereas *tgfb3b* was significantly downregulated specifically during parturition (Fig. 1F).

3.2. Sequence analysis of *tgfb1*

The cDNA sequence of *tgfb1* (Accession number: PV242391) was cloned based on black rockfish genomic data. The ORF of *tgfb1* 1161 bp in length encoded 386 amino acids. The coding region comprised a putative signal peptide spanning 57 bp, a pro-peptide region of 732 bp, and a mature peptide region of 339 bp. (Fig. 2A). Amino acids sequence

Fig. 1. (A) Relative expression levels of *tgfb* isoforms in developing ovary. The heatmap(B) and relative expression levels(C-F) of *tgfb* isoforms in different pregnancy periods. The X axis indicates different development stages in black rockfish. The Y axis indicates the relative expression normalized to 18 s rRNA. The data are presented as the mean \pm SD ($n = 3$). Different letters indicate significant differences ($P < 0.05$). PV: previtellogenesis; V: vitellogenesis; M: mature stage; MM and LM: mature but unfertilized stage; F: fertilized stage; S: sarcomere stage; Pb: before parturition stage; Pd: during parturition stage; Pa: after parturition stage.

alignment indicated that the black rockfish TGF- β 1 protein comprised seven α helices and seventeen β folds (Fig. 2B). Phylogenetic analysis based on the amino acid sequence revealed two major branches in the neighbor-joining tree, with all teleost TGF- β 1 proteins clustered together, while those from tetrapods formed a separate clade (Fig. 2C). In addition, nine conserved cysteine residues were identified in the mature peptide of black rockfish TGF- β 1, and two monomers were predicted to form a functional homodimer (Fig. 2D).

3.3. Expression pattern and localization of *tgfb1*

Tissue distribution analysis showed that *tgfb1* was widely expressed

in various tissues. In particular, *tgfb1* was highly expressed in the ovary, spleen, heart, kidney and gill, while lower expression levels were detected in liver, stomach, intestines and brain (Fig. 3A). As shown in Fig. 3B, during pregnancy in the black rockfish, the positive signals of *tgfb1* were observed in the follicular layer and embryo.

3.4. Recombinant expression of TGF- β 1 and functional verification

To further study the molecular function of TGF- β 1, rTGF- β 1 was generated through a prokaryotic expression system (Fig. 4A). A single band of approximately 14.7 kDa was observed on the SDS-PAGE gel after inclusion solubilization and renaturation (Fig. 4B). The concentration of rTGF- β 1 was 0.15 ng/mL. Primary cells from black rockfish head kidney were cultured to verify the bioactivity of rTGF- β 1. rTGF- β 1 significantly increased *il6* and *tnfa* expression levels compared with control group ($P < 0.05$) (Fig. 4C, 4D), which indicated that rTGF- β 1 was functional active *in vitro*.

To understand the role of rTGF- β 1 in ovary cells during developing and pregnant period, we treated ovary cells with different concentration of rTGF- β 1. The *il6* and *il17c* levels were significantly increased with treated 250 ng/mL rTGF- β 1 (Fig. 5).

3.5. RNA-seq analysis of ovarian matrix cells

The Illumina platform was applied for detecting RNA-seq in ovarian samples from four different treatments (Accession number: PRJNA1230364). After preprocessing and removing low-quality sequences, the average clean reads of the control and treatment groups in developing ovary used in subsequent analysis were 44,292,410 and 46079510, with Q30 average percentages of 94.41 % and 93.79 %. And the average clean reads of control and experimental samples in pregnant ovary were 43,527,740 and 42987626. Accordingly, the Q30 average percentage of the groups was 93 % and 93.84 %. In addition, more than 90 % average total map was totally obtained by mapping these clean reads with black rockfish genomes.

The PCA results showed twelve samples from D_control, D_TGF- β 1, P_control and P_TGF- β 1 groups could be well divided (Fig. 6A). A heatmap of differential genes expression pattern is shown in Fig. 6B. Differential expression analysis showed 1427 DEGs (559 upregulated DEGs and 868 downregulated DEGs) and 1362 DEGs (717 upregulated and 645 downregulated DEGs) in D_control vs D_TGF- β 1 and P_control vs P_TGF- β 1, respectively (Fig. 6C, 6D).

The GO enrichment analysis of DEGs were classified into biological process (BP), cellular component (CC), and molecular function (MF), respectively. Compared with control group, significantly upregulated enriched GO terms ($P < 0.01$) in developing ovary were mainly associated with immune response and signal transduction (Fig. 7A). And the GO analysis performed the 717 upregulated DEGs identified in P_control vs P_TGF- β 1. The top 20 GO terms include immune response, cell death and signal transduction (Fig. 7B). The Venn graph showed that TGF- β 1 treatments groups common upregulated 129 DEGs. KEGG enrichment analysis was mainly divided into three categories, including immune response (Toll-like receptor signaling pathway; C-type lectin receptor signaling pathway; RIG-I-like receptor signaling pathway; NOD-like receptor signaling pathway; Cytokine-cytokine receptor interaction), cell death (Apoptosis; Necroptosis), and angiogenesis (TGF- β signaling pathway; VEGF signaling pathway) (Fig. 8).

The PPI analysis revealed a complex network of interactions among DEGs. As shown in Fig. 9, five hub genes including *tnf*, *il10*, *cd40*, *tbx21* and *il21r* were identified for pivotal candidate genes among 129 upregulated DEGs, and *csf1r*, *lbp1* and *plek* were identified as hub genes for 109 common downregulated DEGs, respectively. In addition, eight genes were randomly selected from D_control vs D_TGF- β 1 and P_control vs P_TGF- β 1 for qPCR analysis to verify the gene expression patterns in the transcriptome. The results indicated that qPCR expression pattern of the selected genes was significantly correlated with the RNA-seq results

A

1	ATG	AAG	CTG	GTG	GTC	TTG	ATG	CTC	ATG	GTT	GTG	TAC	ACG	GTG	GGC	AAC	GTA	GGC	GGT	ATG	
1	M	K	L	V	V	L	M	L	M	V	V	K	T	V	G	N	V	G	G	M	
61	TCT	ACG	TGT	AAG	ACG	CTG	GAC	CTG	GAG	ATG	GTA	AAG	AAA	AAG	CGC	ATT	GAG	GCC	ATC	AGG	
21	S	T	C	K	T	L	D	L	E	M	V	K	K	K	R	I	E	A	I	R	
121	AGC	CAG	ATC	CTC	AGC	AAA	CTG	CGC	TTG	CCA	AAA	GAG	CCT	GAG	CCA	GAT	CAG	GCT	GGA	GAC	
41	S	Q	I	L	S	K	L	R	L	P	K	E	P	E	P	D	Q	A	G	D	
181	GAC	GAG	GAC	ATC	CCC	ATC	ACC	CTG	TTG	TCC	CTC	TAC	AAC	AGC	ACC	AAG	GAG	ATG	CTG	AGG	
61	D	E	D	I	P	I	T	L	L	S	L	Y	N	S	T	K	E	M	L	R	
241	GAG	CAG	CAG	ACC	CAG	GTC	CAG	ACG	GAC	ATC	TCC	GAA	CAT	CAG	GAG	GAG	GAG	TAC	TTC		
81	E	Q	T	Q	V	Q	T	D	I	S	E	H	Q	E	E	E	E	Y	F		
301	GCT	AAG	GTG	CTG	CAC	AAG	TTC	AAC	ATG	ACC	ACA	AAA	AAT	AGC	ACA	GGG	ACC	TCC	AAG	AGC	
101	A	K	V	L	H	K	F	N	M	T	T	K	N	S	T	G	T	S	K	S	
361	TCC	ATA	AAG	ATC	CCG	ATG	TTC	TTC	AAC	ATC	TCA	GAG	ATA	CGG	GAC	AGC	GTG	GGA	GAT	TAT	
121	S	I	K	I	P	M	F	F	N	I	S	E	I	R	D	S	V	G	D	Y	
421	CGC	CTG	CTG	ACC	AGC	GCC	GAG	CTG	CGG	ATG	CTC	ATC	AAG	AAA	ACC	GCG	ATC	GCA	AAT	CAG	
141	R	L	L	T	S	A	E	L	R	M	L	I	K	K	T	A	I	A	N	Q	
481	CAG	CGG	GTG	GAG	CTG	TAC	CAA	GGT	CTG	GAT	ACC	TCG	GCC	AGC	TAC	ATC	GCT	TCC	CGC	TTC	
161	Q	R	V	E	L	Y	Q	G	L	D	T	S	A	S	Y	I	A	S	R	F	
541	ATC	AAC	AAC	AAC	TGG	AAA	GAC	AAA	TGG	CTG	TCC	TTC	GAT	GTC	ACC	GAG	ACC	CTG	CAG	AAC	
181	I	N	N	N	W	K	D	K	W	L	S	F	D	V	T	E	T	L	Q	N	
601	TGG	CTC	AAA	GGG	ACC	GAG	GAT	GAG	CAT	AGT	TTC	CAA	CTT	CGG	CTG	TTC	TGT	GAA	TGC	AGC	
201	W	L	K	G	T	E	D	E	H	S	F	Q	L	R	L	F	C	E	C	S	
661	CAG	GCA	AGT	GTC	GAC	AGT	AGC	TTC	AGT	TTT	TCC	ATC	TCT	GGG	ATC	GAG	ACC	GGT	AGG	GGG	
221	Q	A	S	V	D	S	S	F	S	F	S	I	S	G	I	E	T	G	R	G	
721	GAC	ACG	GGA	CTT	TTA	CAG	GCG	ATG	ACA	AAG	CAA	CCA	CCC	TAC	ATC	CTG	ACC	ATG	TCC	ATC	
241	D	T	G	L	L	Q	A	M	T	K	Q	P	P	Y	I	L	T	M	S	I	
781	CCT	CAG	AAC	AGC	AGC	ACC	CAC	CTC	TCC	TCG	CGC	AAA	AAA	CGC	TCC	ACG	GAG	ACG	AAA	GAC	
261	P	Q	N	S	S	T	H	L	S	S	R	K	R	S	T	E	T	K	D		
841	ACC	TGC	ACA	GCC	ACG	ACG	GAG	TGC	TGC	TGC	CGG	AGC	TTG	TAC	ATC	GAC	TTC	AGG	AAA		
281	T	C	T	A	T	T	E	T	C	C	V	R	S	L	Y	I	D	F	R	K	
901	GAT	CTG	GGC	TGG	AAG	TGG	ATA	CAC	AAG	CCG	ACG	GGC	TAT	AAT	GCC	AAC	TAC	TGC	ATG	GGG	
301	D	L	G	W	K	W	I	H	K	P	T	G	Y	N	A	N	Y	C	M	G	
961	TCC	TGC	ACC	TAC	ATC	TGG	AAT	GCT	GAA	AAC	AAA	TAT	TCT	CAG	ATT	TTG	GCC	CTG	TAC	AAG	
321	S	C	T	Y	I	W	N	A	E	N	K	Y	S	Q	I	L	A	L	Y	K	
1021	CAT	CAC	AAC	CCG	GGA	GCC	TCT	GCC	CAG	CCC	TGC	TGC	GTT	CCC	CAG	GCT	CTG	GAG	CCA	CTG	
341	H	H	N	P	G	A	S	A	Q	P	C	C	V	P	Q	A	L	E	P	L	
1081	CCA	ATC	CTC	TAC	GTG	GGC	CGG	CAA	CAC	AAG	GTG	GAG	CAG	CTG	TCC	AAT	ATG	ATT	GTG		
361	P	I	L	Y	Y	V	G	R	Q	H	K	V	E	Q	L	S	N	M	I	V	
1141	AAG	TCC	TGC	AAG	TGT	AGC	TAA														
381	K	S	C	K	C	S	*														

B

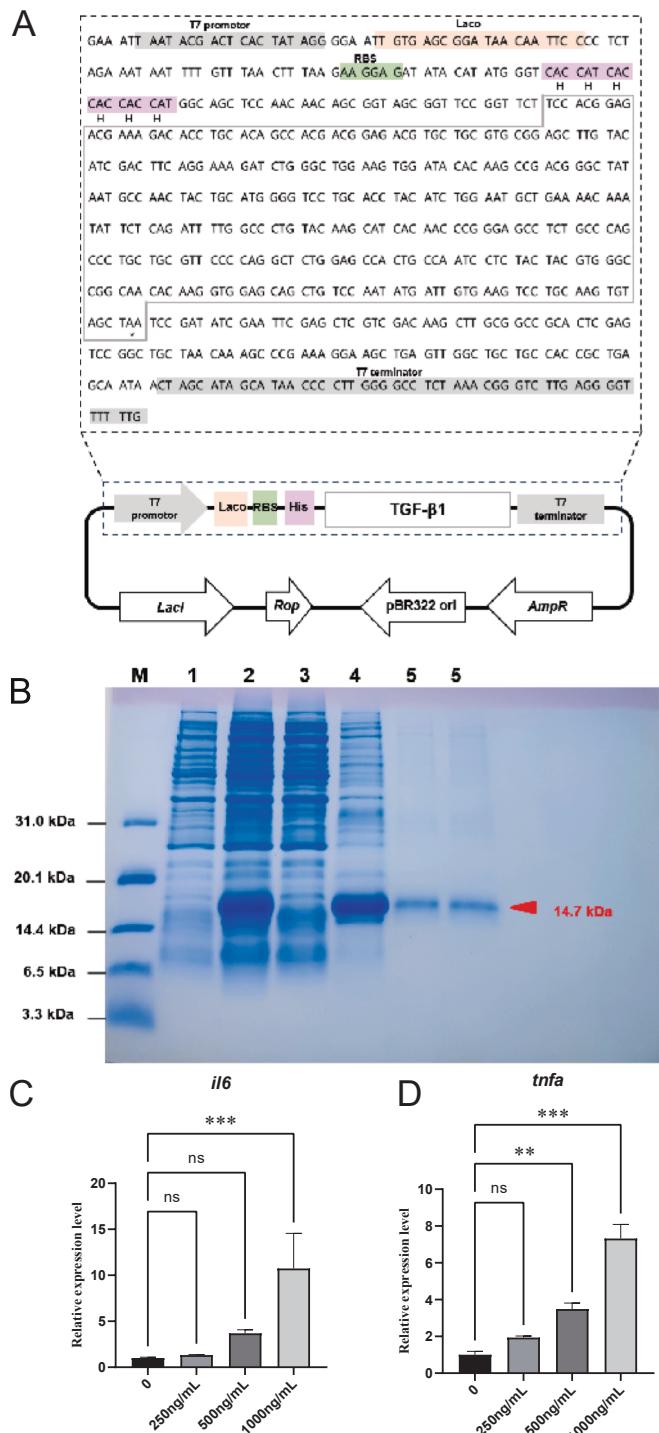
SP	α1	α2	TT
Sebastes schlegelii	
Larimichthys crocea	
Danio rerio	
Homo sapiens	
Mus musculus	
Gallus gallus	

α3	α4	α5	α6	α7	α8	α9	α10	α11	α12	α13	α14	α15	α16	α17	α18	α19	α20	α21	α22	α23	α24	α25	α26	α27	α28	α29	α30	α31	α32	α33	α34	α35	α36	α37	α38	α39	α40	α41	α42	α43	α44	α45	α46	α47	α48	α49	α50	α51	α52	α53	α54	α55	α56	α57	α58	α59	α60	α61	α62	α63	α64	α65	α66	α67	α68	α69	α70	α71	α72	α73	α74	α75	α76	α77	α78	α79	α80	α81	α82	α83	α84	α85	α86	α87	α88	α89	α90	α91	α92	α93	α94	α95	α96	α97	α98	α99	α100	α101	α102	α103	α104	α105	α106	α107	α108	α109	α110	α111	α112	α113	α114	α115	α116	α117	α118	α119	α120	α121	α122	α123	α124	α125	α126	α127	α128	α129	α130	α131	α132	α133	α134	α135	α136	α137	α138	α139	α140	α141	α142	α143	α144	α145	α146	α147	α148	α149	α150	α151	α152	α153	α154	α155	α156	α157	α158	α159	α160	α161	α162	α163	α164	α165	α166	α167	α168	α169	α170	α171	α172	α173	α174	α175	α176	α177	α178	α179	α180	α181	α182	α183	α184	α185	α186	α187	α188	α189	α190	α191	α192	α193	α194	α195	α196	α197	α198	α199	α200	α201	α202	α203	α204	α205	α206	α207	α208	α209	α210	α211	α212	α213	α214	α215	α216	α217	α218	α219	α220	α221	α222	α223	α224	α225	α226	α227	α228	α229	α230	α231	α232	α233	α234	α235	α236	α237	α238	α239	α240	α241	α242	α243	α244	α245	α246	α247	α248	α249	α250	α251	α252	α253	α254	α255	α256	α257	α258	α259	α260	α261	α262	α263	α264	α265	α266	α267	α268	α269	α270	α271	α272	α273	α274	α275	α276	α277	α278	α279	α280	α281	α282	α283	α284	α285	α286	α287	α288	α289	α290	α291	α292	α293	α294	α295	α296	α297	α298	α299	α300	α301	α302	α303	α304	α305	α306	α307	α308	α309	α310	α311	α312	α313	α314	α315	α316	α317	α318	α319	α320	α321	α322	α323	α324	α325	α326	α327	α328	α329	α330	α331	α332	α333	α334	α335	α336	α337	α338	α339	α340	α341	α342	α343	α344	α345	α346	α347	α348	α349	α350	α351	α352	α353	α354	α355	α356	α357	α358	α359	α360	α361	α362	α363	α364	α365	α366	α367	α368	α369	α370	α371	α372	α373	α374	α375	α376	α377	α378	α379	α380	α381	α382	α383	α384	α385	α386	α387	α388	α389	α390	α391	α392	α393	α394	α395	α396	α397	α398	α399	α400	α401	α402	α403	α404	α405	α406	α407	α408	α409	α410	α411	α412	α413	α414	α415	α416	α417	α418	α419	α420	α421	α422	α423	α424	α425	α426	α427	α428	α429	α430	α431	α432	α433	α434	α435	α436	α437	α438	α439	α440	α441	α442	α443	α444	α445	α446	α447	α448	α449	α450	α451	α452	α453	α454	α455	α456	α457	α458	α459	α460	α461	α462	α463	α464	α465	α466	α467	α468	α469	α470	α471	α472	α473	α474	α475	α476	α477	α478	α479	α480	α481	α482	α483	α484	α485	α486	α487	α488	α489	α490	α491	α492	α493	α494	α495	α496	α497	α498	α499	α500	α501	α502	α503	α504	α505	α506	α507	α508	α509	α510	α511	α512	α513	α514	α515	α516	α517	α518	α519	α520	α521	α522	α523	α524	α525	α526	α527	α528	α529	α530	α531	α532	α533	α534	α535	α536	α537	α538	α539	α540	α541	α542	α543	α544	α545	α546	α547	α548	α549	α550	α551	α552	α553	α554	α555	α556	α557	α558	α559	α550	α551	α552	α553	α554	α555	α556	α557	α558	α559	α560	α561	α562	α563	α564	α565	α566	α567	α568	α569	α570	α571	α572	α573	α574	α575	α576	α577	α578	α579	α580	α581	α582	α583	α584	α585	α586	α587	α588	α589	α590	α591	α592	α593	α594	α595	α596	α597	α598	α599	α590	α591	α592	α593	α594	α595	α596	

Fig. 2. (A) Nucleotide and amino acid sequence of TGF- β 1 in black rockfish. “—” indicates signal peptide. RKKR is the furin cleavage site. Gray and yellow markers are LAP pre-peptide and mature peptide. Blue indicates cysteine. (B) The sequence alignment of TGF- β 1 in black rockfish (*Sebastes schlegelii*), large yellow croaker (*Larimichthys crocea*), zebrafish (*Danio rerio*), human (*Homo sapiens*), mouse (*Mus musculus*), chicken (*gallus gallus*). (C) Phylogenetic tree of TGF- β 1 in black rockfish and other species. Data was resampled with 1,000 bootstrap replicates. The Genebank accession numbers are as follows: *Larimichthys crocea* (KAE8294992.1), *Cynoglossus semilaevis* (XP_008307032.1), *Oryzias latipes* (XP_004075270.1), *Oreochromis niloticus* (XP_025753606), *Danio rerio* (AAO60240), *Oncorhynchus mykiss* (CAA07707.1), *Carassius auratus* (ABU55371), *Xenopus laevis* (NP_001081330), *Gallus gallus* (AAA49089.1), *Homo sapiens* (CAA29283.1), *Mus musculus* (AAA37674). (D) Three-dimensional structure prediction of TGF- β 1 mature peptide in black rockfish. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (A) Relative expression levels of *tgfβ1* in different organs (heart, liver, spleen, kidney, head kidney, intestine, gill, skin, pituitary, white, muscle, ovary, brain). (B) The localization of *tgfβ1* in pregnant ovary of black rockfish via *in situ* hybridization. The red arrows indicate positive signals. Scale bars (A, B) = 100 μ m. Scale bars (A') = 50 μ m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

($R^2 = 0.9813$ and $R^2 = 0.9804$) (Fig. 10).


4. Discussion

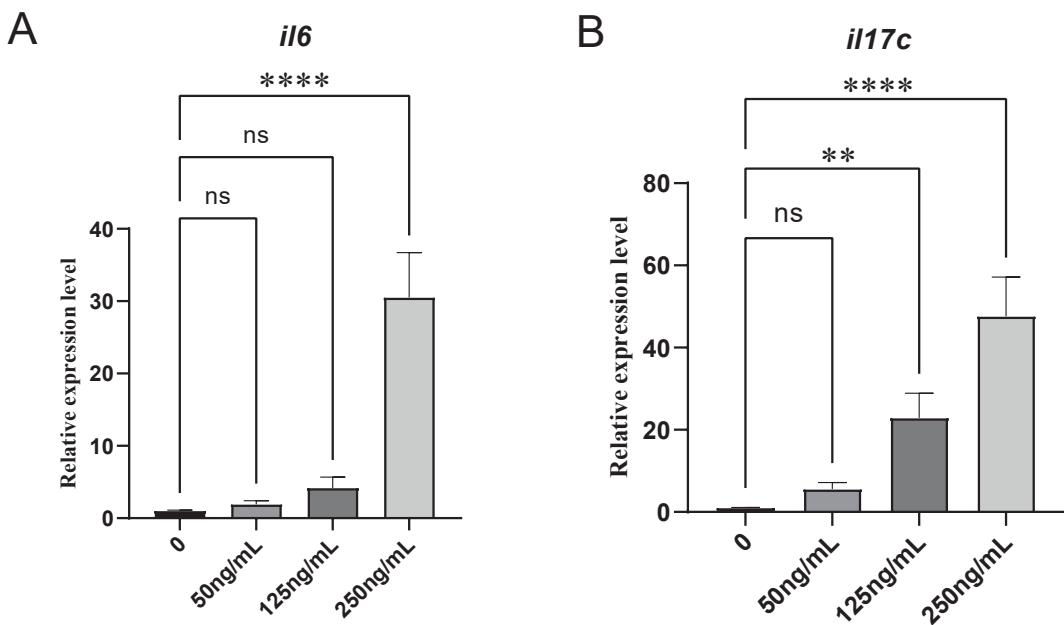
As the major member of TGF- β family, TGF- β 1, which evolutionarily emerged in deuterostomes and was widely found in vertebrates (Pang et al., 2011), has been reported in mammals, birds, amphibians, and many teleost, such as plaice (*Pleuronectes platessa*), sea bream (*Sparus aurata*) and goldfish (*Carassius auratus*) (Laing et al., 2000; Tafalla et al., 2003; Haddad et al., 2008b). In black rockfish, four TGF- β isoforms were identified in genome and transcriptome. Among which, the expression level of *tgfβ1* mRNA was significantly increased in the developing ovary. In mammals, TGF- β , a local ovarian paracrine factor and a peptide growth factor has been reported to play important roles in the development of ovary (Drummond, 2005). Impaired ovarian function, such as oocyte incompetence, was found in *tgfβ1* null mutant mice (Ingman and Robertson, 2009). TGF- β 1 stimulated synthesis of steroids in granulosa cells by up-regulating expression of *cyp11a1* and *hsd3d* in rat ovary (Chen et al., 2008). TGF- β 1 was detected in follicles at all stages of development and enhanced the expression of *fshr*, suggesting TGF- β 1 may promote vitellogenesis in zebrafish (Kohli et al., 2003, 2005). In humans, TGF- β is highly expressed in the early stage of pregnancy, which is involved in embryo implantation, immune tolerance regulation and placental development, but its expression decreases in the late pregnancy (Wen et al., 2023). The expression profile of *tgfβ1* was similar with human, which showed a pivotal physiological role during pregnancy in the ovary of black rockfish. Therefore, we identified TGF- β 1 in black rockfish, which shared all the features characteristic of TGF- β superfamily, including signal peptide, pro-peptide and a mature peptide (Tzavlaki and Moustakas, 2020). Multiple sequence comparison and the phylogenetic tree showed that TGF- β 1 congregated with teleost and differed from mammals. These results suggested that TGF- β 1 of black rockfish was an evolutionarily conserved of secreted polypeptide factor.

In common carp (Zhan and Jimmy, 2000) and grass carp (Yang and Zhou, 2008), *tgfβ1* mRNA was highly expressed in head kidney and spleen, indicating a close association between TGF- β 1 and fish immunity. Similarly, in black rockfish, *tgfβ1* was also highly expressed in the immune organ, supporting its role as an immunoregulatory cytokine. In addition, strong positive signals of *tgfβ1* were detected in the ovary

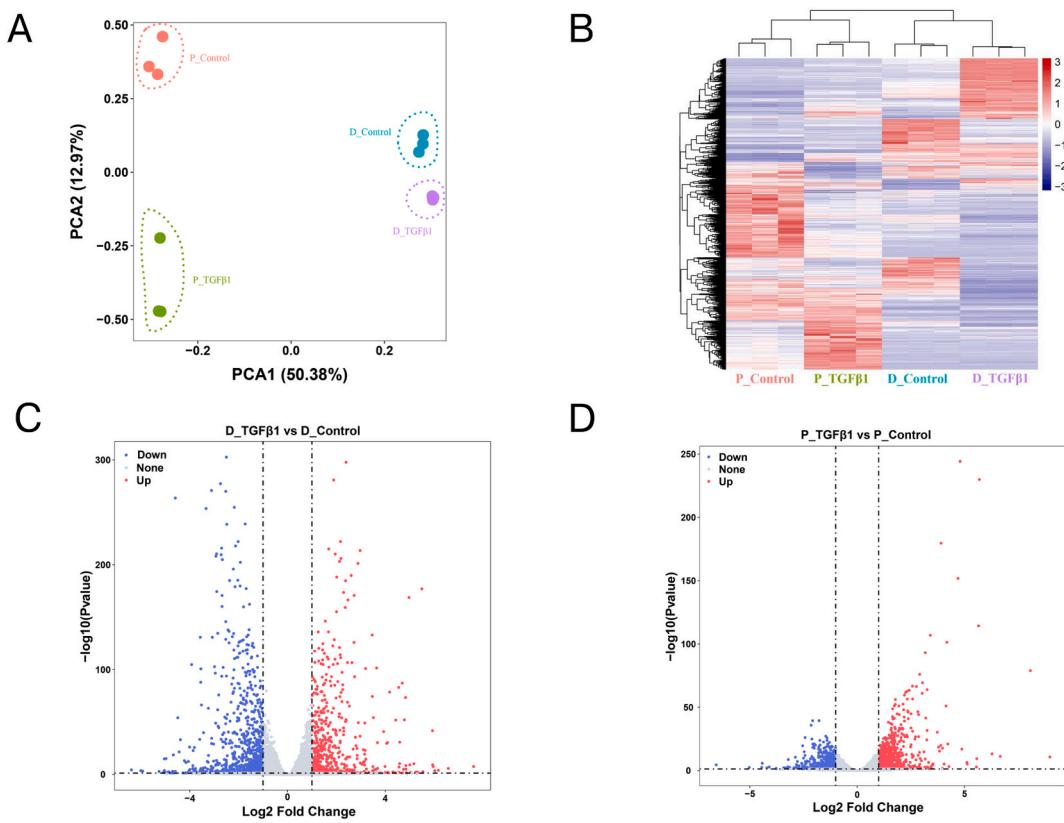
through ISH. The high expression of *tgfβ1* in ovarian tissue may be related to the presence of sperm stored within the ovary, which was confirmed in the transcriptome. In the transcriptome of TGF β 1-treated developing ovarian cells, the physiological process of GO function enrichment was mainly immunity. In mice, TGF- β acted as a stimulating factor and transmitted signals activating the immune system to response the sperm (Govinden and Bhoola, 2003). High concentrations of TGF- β 1 can regulate female immune tolerance to sperm in humans (Yang et al., 2021). After mating, the ovary will have an inflammatory response to sperm, and TGF- β 1 promoted immune maternal tolerance to antigen (sperm), as has been demonstrated in cattle (Odhiambo et al., 2009). In black rockfish, sperm are stored in the ovary after mating. As foreign antigens, sperm can trigger an immune response in the female. Our findings suggest that TGF- β 1 may contribute to maternal immune tolerance in black rockfish.

During normal pregnancy, as a multifunctional cytokine, TGF- β 1 is widely involved in the regulation of immune cell function and plays an indispensable role in fetal-maternal immune tolerance (Kang et al., 2016). In black rockfish, the pregnant ovary exhibited multiple response to TGF- β 1 stimulation. According to transcriptomic results, the biological processes including immune response and signal transduction accounted for the top 20 GO terms. The immune responses involved the activity of chemokines (*cxcl6*, *cxcl12*, *cxcl13*), cytokines (*il6*, *il10*, *il17*), and their corresponding receptors. Among them, IL10 was central to the polarization of homeostatic molting macrophages, and IL10 deficient mice had a significantly increased rate of spontaneous abortion (Chaouat et al., 2005). TGF- β 1 induces chemokines production in peripheral blood monocytes and repairs inflammatory damage (Wahl et al., 1987). In humans, IL17a secretion by the placental macrophages participated in the morphogenetic events associated with placental development (Pavlov et al., 2018). M2 macrophages promoted cell homeostasis, trophoblast invasion, and migration by secreting TGF- β 1 (Wen et al., 2023). Furthermore, KEGG analysis of TGF β 1-treated ovarian matrix cells focused on immune-related pathways. Notably, cytokine-cytokine receptor interaction is involved in gestation and hinders the process of pregnancy in case of dysregulation or uneven expression (Meyyazhagan et al., 2023). Toll-like receptor (TLR) signaling pathway has been implicated in the regulation of ovulation, fertilization, gestation and parturition in females (Kannaki et al., 2011).

Fig. 4. (A) The pET-His-TGF β 1 vector information. (B) SDS-PAGE analysis of rTGF- β 1. M: Marker. 1: Protein before IPTG induction. 2: Protein after IPTG induction. 3: Protein in the supernatant after IPTG induction. 4: Protein in the precipitate after IPTG induction. 5: rTGF- β 1 after dilution and renaturation (14.7 kDa). (C-D) The relative expression level *il6* and *trfa* in head kidney cells treated with 250, 500 and 1000 ng/mL rTGF- β 1 (n = 3). The X axis indicates different treatments: control, 250 ng/mL, 500 ng/mL, and 1000 ng/mL. The Y axis indicates the relative expression normalized to 18 s rRNA. Two and Three asterisks indicate significant difference ($P < 0.01$ and $P < 0.001$, respectively).

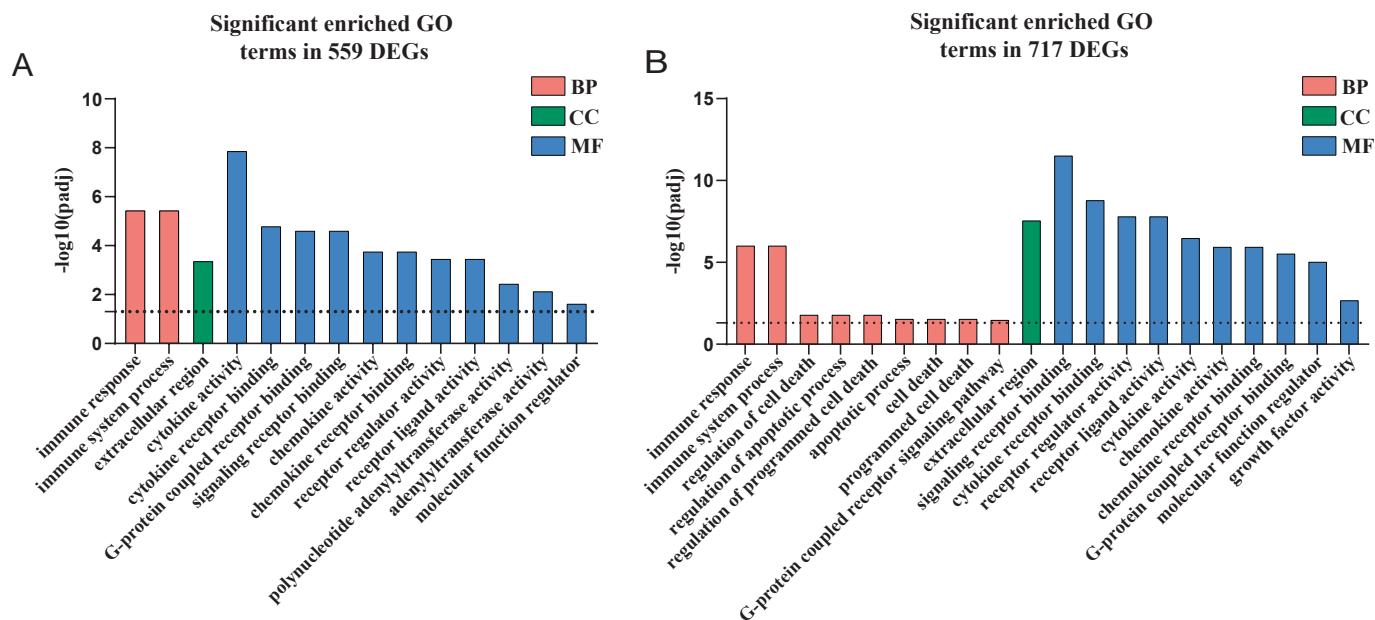

In mice, TLR4-null mutants exhibited impaired reproductive outcomes after allogeneic mating, with reduced pregnancy rate (Chan et al., 2021). In the present study, the regulatory pathway of TGF- β 1 on developing and pregnant ovaries were similar, suggesting that TGF- β 1

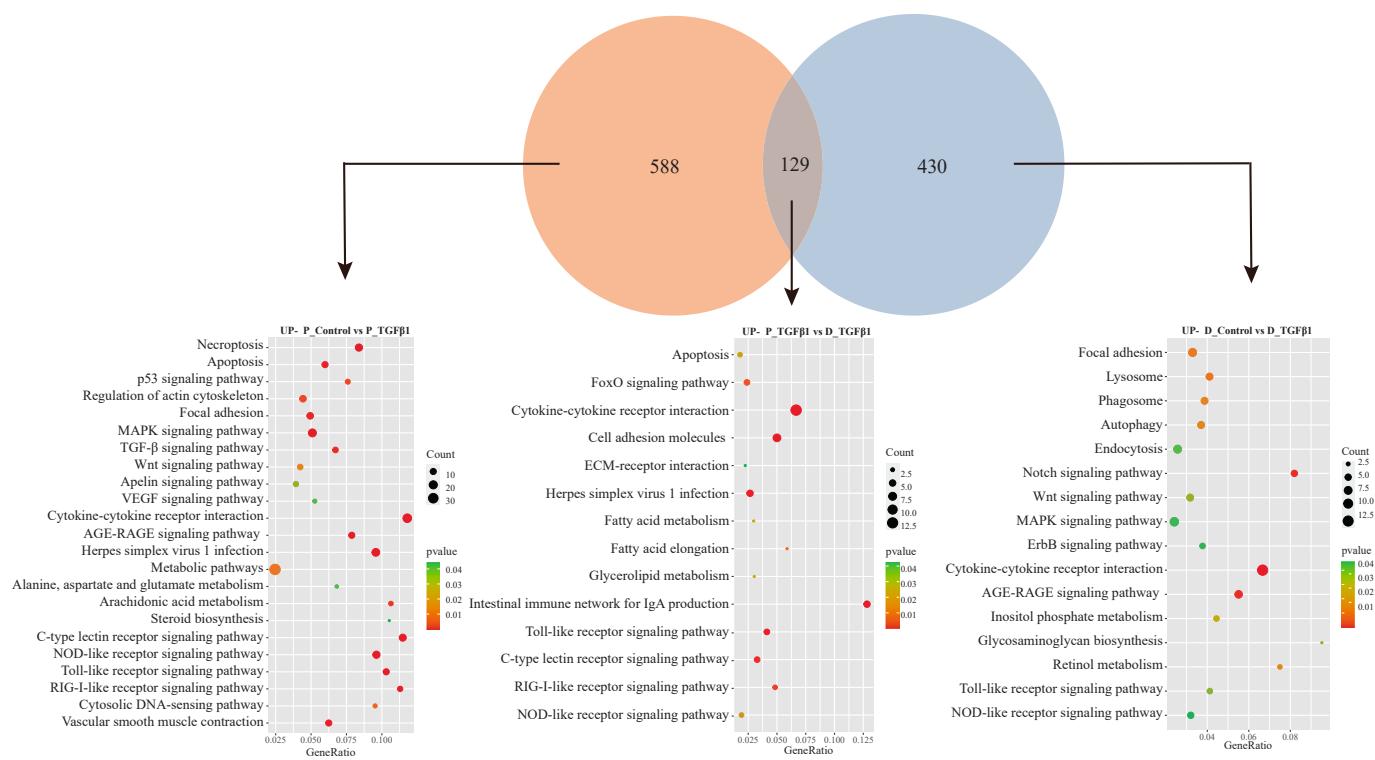
may serve as a key modulator of maternal immune tolerance during gestation.


TGF- β 1 also play a role in angiogenesis during pregnancy by modulating several signaling pathway, including the MAPK, TGF- β , Apelin and VEGF signaling. These pathways are regulated by multiple growth factors, such as FGF, VEGF and TGF- β . Different components of the TGF- β signaling pathway work in a coordinated manner during in vivo vascular formation, and aberrant TGF- β signal transduction underlies various vascular diseases (Goumans et al., 2003). FGF-2 has been found to contribute to angioblast generation and vessel formation in quail/chick chimeras (Cox and Poole, 2000). VEGF, a prominent endothelial-specific growth factor, is known for its roles in enhancing vascular permeability and supporting angiogenesis (Dai and Rabie, 2007). In human, TGF- β 1 modulates placental vascular permeability and angiogenesis by regulating VEGF production in trophoblasts during early pregnancy, thereby facilitating embryo implantation and placental formation (Chung et al., 2000). Embryos of TGF- β 1 knockout mice displayed hematopoietic dysfunction and disrupted yolk sac vascular development (Dickson et al., 1995). TGF- β 1 and different TGF- β 1 receptor system have major roles in embryonic vascular morphogenesis and in the establishment and maintenance of vessel wall integrity (Goumans et al., 2003). During gestation in the black rockfish, the embryo surface was covered with rich network of capillaries (Zheng et al., 2023), and approximately 40 % of the energy required for development was supplied by the maternal system (Boehlert et al., 1986). Together, these findings support the potential role for TGF- β 1 in contributing to ovarian angiogenesis and embryonic development during pregnancy in black rockfish. However, the mechanisms by which TGF- β 1 regulates angiogenesis, as well as its specific effects during gestation, require further experimental validation.

In addition to immune response and angiogenesis induced by a series of chemokines, cytokines and their receptors, cell death was also induced by TGF β 1-treatment in ovary. Apoptosis played a crucial role during embryo implantation in rodents where morphological characteristics of apoptosis were observed in endometrial epithelial cells at the embryo implantation site (Shooneer et al., 2005). In humans, TGF- β 1 treatment of endometrial rat stromal cells has been shown to induce apoptosis, suggesting that TGF- β 1 might be involved specifically in the control of apoptosis in the uterus during pregnancy (Moulton, 1994). In black rockfish, TGF- β 1 activated apoptosis-related genes and pathways in ovary. IL6, forms a positive feedback regulatory loop with TGF- β 1, regulating GC apoptosis in pig ovaries (Maeda et al., 2007). The apoptotic effect of TGF- β 1 in bovine MEC was mediated by IGFBPs and occurred through IGF sequestration (Gajewska and Motyl, 2004). In follicular dendritic cells, TGF- β has been found to regulate *fas* and *caspase-8* expression and thus control programmed cell death (Park et al., 2005). IL10 upregulated the expression of *fasl* in early gestation trophoblast cells and promoted immune protection (Aschkenazi et al., 2002). TGF- β 1 participated in cell death either indirectly through cytokines or directly by regulating apoptotic genes, with significant enrichment of necroptosis, apoptosis and phagosome pathways, indicating the regulation of TGF- β 1 maintained homeostasis in ovary. Meanwhile, regulation of cell death pathway played a pivotal role in coordinating multiple aspects of ovarian development and functional transitions. Follicles, the functional unit of ovary, atresia depend predominantly on the apoptosis of GCs (Zhou et al., 2019). Formation of preovulatory follicle involves a balance between survival and death of the oocytes and the surrounding follicular cells (Johnson, 2003). As an ovoviparous teleost, cell death may contribute to the transition from the ovary to the uterus-like status after in situ fertilization in black rockfish.

In summary, TGF- β 1 plays an indispensable role in the developing and pregnant process of ovary in black rockfish. For one thing, TGF- β 1 adjusted chemokines and inflammatory cytokines to participated in the balance of immune system in the mother-fetus interaction. For another, TGF- β 1 was involved in angiogenesis by regulating key angiogenic


Fig. 5. The relative expression level *il6* and *il17c* in pregnant (A) and developing (B) ovary cells treated with rTGF- β 1 ($n = 3$). The X axis indicates different treatments. The Y axis indicates the relative expression normalized to 18 s rRNA. Two and four asterisks indicate significant difference ($P < 0.01$ and $P < 0.0001$, respectively).

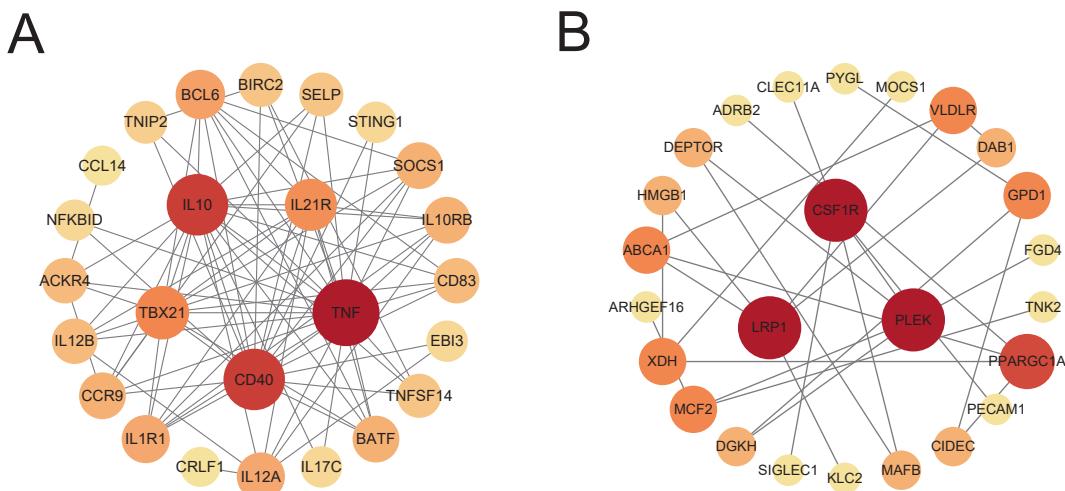

Fig. 6. (A) The PCA analysis of the control and TGF- β 1 groups. (B) Heat map of differentially expressed genes (DEGs). The color in red or blue is marked up and down. (C-D) The Volcano plots for control vs TGF- β 1 group. D: RNA-seq from developing ovary cells. P: RNA-seq from pregnant ovary cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

factors and pathways. Additionally, TGF- β 1 also regulated cell death-related genes to transition the ovary to a uterus-like status during gestation. These results not only revealed the diverse functions of TGF- β 1 but also provided additional mechanistic insights for further study of

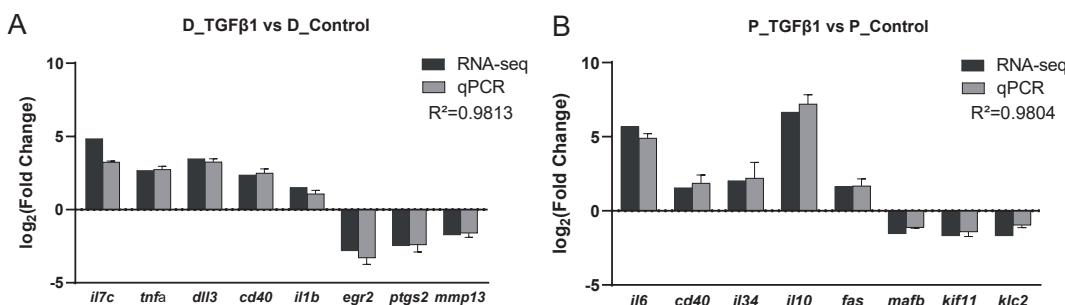
pregnancy regulation in black rockfish.

Fig. 7. (A) The top 14 GO terms of the 559 DEGs from control and TGF- β 1 groups in developing ovary cells. (B) The top 20 GO terms of the 717 DEGs from control and TGF- β 1 groups in pregnant ovary cells. BP: biological processes, CC: cell components, MF: molecular functions.

Fig. 8. Venn diagram of up-regulated DEGs in developing and pregnant ovary cells treated with rTGF- β 1 and related KEGG enrichment pathway.


CRediT authorship contribution statement

Xiao Jing: Writing – original draft, Validation, Investigation, Data curation. **Likang Lyu:** Software, Formal analysis. **Chenpeng Zuo:** Software, Methodology. **Jianshuang Li:** Visualization, Conceptualization. **Xiaojie Wang:** Resources, Investigation. **Jing Yang:** Methodology, Conceptualization. **Tianyu Jiang:** Validation, Methodology. **Yun Li:** Writing – review & editing, Methodology. **Haishen Wen:** Writing – review & editing, Methodology. **Xin Qi:** Writing – review & editing,


Supervision, Funding acquisition.

Funding

This study was supported by the National Natural Science Foundation of China (32470555), the Provincial Natural Science Foundation of Shandong (ZR2023QC009) and the Municipal Natural Science Foundation of Qingdao (23-2-1-62-zyyd-jch).

Fig. 9. Protein-protein interaction networks of up-regulated (A) and down-regulated (B) DEGs following rTGF-β1 treatment. Node colors indicate betweenness centrality, with candidate hub genes at the center of the network.

Fig. 10. Pearson correlation analysis of relative fold changes between qPCR and RNA-Seq for DEGs. (A) DEGs from developing ovary cells. (B) DEGs from pregnant ovary cells.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq—a Python framework to work with high-throughput sequencing data. *Bioinformatics* 31, 166–169. <https://doi.org/10.1093/bioinformatics/btu638>.

Aschkenazi, S., Straszewski, S., Verwer, K.M.A., Foellmer, H., Rutherford, T., Mor, G., 2002. Differential Regulation and Function of the Fas/Fas Ligand System in Human Trophoblast Cells1. *Biol. Reprod.* 66, 1853–1861. <https://doi.org/10.1095/biolreprod66.6.1853>.

Boehlert, G.W., Kusakari, M., Shimizu, M., Yamada, J., 1986. Energetics during embryonic development in kurosoi, *Sebastes schlegeli* Hilgendorf. *J. Exp. Mar. Biol. Ecol.* 101, 239–256. [https://doi.org/10.1016/0022-0981\(86\)90266-2](https://doi.org/10.1016/0022-0981(86)90266-2).

Chan, H.Y., Moldenhauer, L.M., Groom, H.M., Schjenken, J.E., Robertson, S.A., 2021. Toll-like receptor-4 null mutation causes fetal loss and fetal growth restriction associated with impaired maternal immune tolerance in mice. *Sci Rep* 11, 16569. <https://doi.org/10.1038/s41598-021-95213-1>.

Chaouat, G., Meliani, A.A., Martal, J., Raghupathy, R., Elliot, J., Mosmann, T., Wegmann, T.G., 2005. IL-10 prevents naturally occurring fetal loss in the CBA x DBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-γ. *J. Immunol.* 175, 3447. <https://doi.org/10.4049/jimmunol.175.5.3447-d>.

Chen, Y.-J., Lee, M.-T., Yao, H.-C., Hsiao, P.-W., Ke, F.-C., Hwang, J.-J., 2008. Crucial Role of Estrogen Receptor-α Interaction with Transcription Coregulators in Follicle-Stimulating Hormone and Transforming Growth Factor β1 Up-Regulation of Steroidogenesis in Rat Ovarian Granulosa Cells. *Endocrinology* 149, 4658–4668. <https://doi.org/10.1210/en.2008-0063>.

Chung, I.-B., Yelian, F.D., Zaher, F.M., Gonik, B., Evans, M.I., Diamond, M.P., Svinarich, D.M., 2000. Expression and Regulation of Vascular Endothelial Growth Factor in a First Trimester Trophoblast Cell Line. *Placenta* 21, 320–324. <https://doi.org/10.1053/plac.1999.0481>.

Clark, D.A., Coker, R., 1998. Molecules in focus Transforming growth factor-beta (TGF-β). *Int. J. Biochem. Cell Biol.* 30, 293–298. [https://doi.org/10.1016/S1357-2725\(97\)00128-3](https://doi.org/10.1016/S1357-2725(97)00128-3).

Cox, C.M., Poole, T.J., 2000. Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns vessel formation in the quail embryo. *Dev. Dyn.* 218, 371–382. [https://doi.org/10.1002/\(SICI\)1097-0177\(20000621\)218:2<371::AID-DVDDY10>3.0.CO;2-Z](https://doi.org/10.1002/(SICI)1097-0177(20000621)218:2<371::AID-DVDDY10>3.0.CO;2-Z).

Dai, J., Rabie, A.B.M., 2007. VEGF: an Essential Mediator of Both Angiogenesis and Endochondral Ossification. *J. Dent. Res.* 86, 937–950. <https://doi.org/10.1177/154405910708601006>.

Dickson, M.C., Martin, J.S., Cousins, F.M., Kulkarni, A.B., Karlsson, S., Akhurst, R.J., 1995. Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. *Development* 121, 1845–1854. <https://doi.org/10.1242/dev.121.6.1845>.

Drummond, A.E., 2005. TGF-β signalling in the development of ovarian function. *Cell Tissue Res.* 322, 107–115. <https://doi.org/10.1007/s00441-005-1153-1>.

Funkenstein, B., Olek, R., Jakowlew, S.B., 2010. Identification of a novel transforming growth factor-β (TGF-β6) gene in fish: regulation in skeletal muscle by nutritional state. *BMC Mol. Biol.* 11, 37. <https://doi.org/10.1186/1471-2199-11-37>.

Gajewska, M., Motyl, T., 2004. IGF-binding proteins mediate TGF-β1-induced apoptosis in bovine mammary epithelial BME-UV1 cells. *Comp. Biochem. Physiol. C: Toxicol. Pharmacol.* 139, 65–75. <https://doi.org/10.1016/j.cca.2004.09.006>.

Götz, S., García-Gómez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talón, M., Dopazo, J., Conesa, A., 2008. High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Res.* 36, 3420–3435. <https://doi.org/10.1093/nar/gkn176>.

Goumans, M.-J., Lebrin, F., Valdimarsdóttir, G., 2003. Controlling the Angiogenic Switch: A Balance between Two Distinct TGF-β Receptor Signaling Pathways. *Trends Cardiovasc. Med.* 13, 301–307. [https://doi.org/10.1016/S1050-1738\(03\)00142-7](https://doi.org/10.1016/S1050-1738(03)00142-7).

Govinden, R., Bhoola, K.D., 2003. Genealogy, expression, and cellular function of transforming growth factor-β. *Pharmacol. Ther.* 98, 257–265. [https://doi.org/10.1016/S0163-7258\(03\)00035-4](https://doi.org/10.1016/S0163-7258(03)00035-4).

Haddad, G., Hanington, P.C., Wilson, E.C., Grayfer, L., Belosevic, M., 2008. Molecular and functional characterization of goldfish (*Carassius auratus* L.) transforming growth factor beta. *Dev. Comp. Immunol.* 32, 654–663. <https://doi.org/10.1016/j.dci.2007.10.003>.

Hernandez-Valencia, M., Zarate, A., Ochoa, R., Fonseca, M.E., Amato, D., De Jesus Ortiz, M., 2001. Insulin-like growth factor I, epidermal growth factor and transforming growth factor beta expression and their association with intrauterine fetal growth retardation, such as development during human pregnancy. *Diabetes Obes. Metab.* 3, 457–462. <https://doi.org/10.1046/j.1463-1326.2001.00168.x>.

Hinck, A.P., Mueller, T.D., Springer, T.A., 2016. Structural Biology and Evolution of the TGF- β Family. *Cold Spring Harb Perspect Biol* 8, a022103. <https://doi.org/10.1101/cshperspect.a022103>.

Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C., Hedin, C.-H., 2009. Emergence, development and diversification of the TGF- β signalling pathway within the animal kingdom. *BMC Evol Biol* 9, 28. <https://doi.org/10.1186/1471-2148-9-28>.

Ingman, W.V., Robertson, S.A., 2009. The essential roles of TGF β 1 in reproduction. *Cytokine Growth Factor Rev.* 20, 233–239. <https://doi.org/10.1016/j.cytogfr.2009.05.003>.

Johnson, A.L., 2003. Intracellular mechanisms regulating cell survival in ovarian follicles. *Animal Reproduction Science, Ovarian Follicle Development* 78, 185–201. [https://doi.org/10.1016/S0378-4320\(03\)00090-3](https://doi.org/10.1016/S0378-4320(03)00090-3).

Johnson, A.L., Bridgman, J.T., Woods, D.C., 2004. Cellular Mechanisms and Modulation of Activin A- and Transforming Growth Factor β -Mediated Differentiation in Cultured Hen Granulosa Cells. *Biol. Reprod.* 71, 1844–1851. <https://doi.org/10.1095/biolreprod.104.032573>.

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K., 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res.* 45, D353–D361. <https://doi.org/10.1093/nar/gkw1092>.

Kang, X., Zhang, X., Liu, Z., Xu, H., Wang, T., He, L., Zhao, A., 2016. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25+T cells by activation of the TGF- β /β-catenin pathway. *Mol. Hum. Reprod.* 22, 499–511. <https://doi.org/10.1093/molehr/gaw026>.

Kannaki, T.R., Shanmugam, M., Verma, P.C., 2011. Toll-like receptors and their role in animal reproduction. *Anim. Reprod. Sci.* 125, 1–12. <https://doi.org/10.1016/j.anireprosci.2011.03.008>.

Kay, N., Huang, C.-Y., Shiu, L.-Y., Yu, Y.-C., Chang, Y., Schatz, F., Suen, J.-L., Tsai, E.-M., Huang, S.J., 2021. TGF- β 1 Neutralization Improves Pregnancy Outcomes by Restoring Endometrial Receptivity in Mice with Adenomyosis. *Reprod. Sci.* 28, 877–887. <https://doi.org/10.1007/s43032-020-00308-1>.

Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. *Nat Methods* 12, 357–360. <https://doi.org/10.1038/nmeth.3317>.

Kohli, G., Clelland, E., Peng, C., 2005. Potential targets of transforming growth factor- β 1 during inhibition of oocyte maturation in zebrafish. *Reprod Biol Endocrinol* 3, 53. <https://doi.org/10.1186/1477-7827-3-53>.

Kohli, G., Hu, S., Clelland, E., Di Muccio, T., Rothenstein, J., Peng, C., 2003. Cloning of Transforming Growth Factor- β 1 (TGF- β 1) and Its Type II Receptor from Zebrafish Ovary and Role of TGF- β 1 in Oocyte Maturation. *Endocrinology* 144, 1931–1941. <https://doi.org/10.1210/en.2002-0126>.

Laing, K.J., Cunningham, C., Secombes, C.J., 2000. Genes for three different isoforms of transforming growth factor- β are present in plaice (*Pleuronectes platessa*) DNA. *Fish Shellfish Immunol.* 10, 261–271. <https://doi.org/10.1006/fsim.1999.0255>.

Li, Q., Du, X., Wang, L., Shi, K., Li, Q., 2021. TGF- β 1 controls porcine granulosa cell states: A miRNA-mRNA network view. *Theriogenology* 160, 50–60. <https://doi.org/10.1016/j.theriogenology.2020.11.001>.

Thierry, L., 2012. Oviparity or viviparity? That is the question.... *Reprod. Biol.* 12, 259–264. <https://doi.org/10.1016/j.repbio.2012.09.001>.

Lyu, L., Wang, R., Wen, H., Li, Y., Li, J., Wang, X., Yao, Y., Li, J., Qi, X., 2022. Cyclooxygenases of ovoviparous black rockfish (*Sebastodes schlegelii*): Cloning, tissue distribution and potential role in mating and parturition. *Comp. Biochem. Physiol. B Biochem. Mol. Biol.* 257, 110677. <https://doi.org/10.1016/j.cbpb.2021.110677>.

Maeda, A., Inoue, N., Matsuda-Minehata, F., Goto, Y., Cheng, Y., Manabe, N., 2007. The Role of Interleukin-6 in the Regulation of Granulosa Cell Apoptosis During Follicular Atresia in Pig Ovaries. *J. Reprod. Dev.* 53, 481–490. <https://doi.org/10.1262/jrd.18149>.

Meyyazagan, A., Kuchi Bhotla, H., Pappuswamy, M., Tsibizova, V., Al Qasem, M., Di Renzo, G.C., 2023. Cytokine see-saw across pregnancy, its related complexities and consequences. *Int. J. Gynecol. Obstet.* 160, 516–525. <https://doi.org/10.1002/ijgo.14333>.

Moulton, B.C., 1994. Transforming growth factor-beta stimulates endometrial stromal apoptosis in vitro. *Endocrinology* 134, 1055–1060. <https://doi.org/10.1210/en.134.3.1055>.

Muchlisin, Z.A., 2014. A General Overview on Some Aspects of Fish Reproduction. *Aceh International Journal of Science and Technology* 3, 43–52. <https://doi.org/10.13170/aijst.3.1.1355>.

Odhambo, J.F., Poole, D.H., Hughes, L., DeJarnette, J.M., Inskeep, E.K., Dailey, R.A., 2009. Pregnancy outcome in dairy and beef cattle after artificial insemination and treatment with seminal plasma or transforming growth factor beta-1. *Theriogenology* 72, 566–571. <https://doi.org/10.1016/j.theriogenology.2009.04.013>.

Pang, K., Ryan, J.F., Baxevanis, A.D., Martindale, M.Q., 2011. Evolution of the TGF- β Signaling Pathway and Its Potential Role in the Ctenophore. *Mnemiopsis leidyi*. *PLOS ONE* 6, e24152. <https://doi.org/10.1371/journal.pone.0024152>.

Park, S.-M., Kim, S., Choi, J.-S., Hur, D.-Y., Lee, W.-J., Lee, M.-S., Choe, J., Lee, T.H., 2005. TGF- β Inhibits Fas-Mediated Apoptosis of a Follicular Dendritic Cell Line by Down-Regulating the Expression of Fas and Caspase-8: Counteracting Role of TGF- β on TNF Sensitization of Fas-Mediated Apoptosis 1. *J. Immunol.* 174, 6169–6175. <https://doi.org/10.4049/jimmunol.174.10.6169>.

Pavlov, O., Selutin, A., Pavlova, O., Selkov, S., 2018. Macrophages are a source of IL-17 in the human placenta. *Am. J. Reprod. Immunol.* 80, e13016. <https://doi.org/10.1111/ajri.13016>.

Perteal, M., Kim, D., Perteal, G.M., Leek, J.T., Salzberg, S.L., 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc* 11, 1650–1667. <https://doi.org/10.1038/nprot.2016.095>.

Raghupathy, R., Kalinka, J., 2008. Cytokine imbalance in pregnancy complications and its modulation. *Front Biosci* 13, 985. <https://doi.org/10.2741/2737>.

Shooner, C., Caron, P.-L., Fréchette-Frigon, G., Leblanc, V., Déry, M.-C., Asselin, E., 2005. TGF-beta expression during rat pregnancy and activity on decidual cell survival. *Reprod Biol Endocrinol* 3, 20. <https://doi.org/10.1186/1477-7827-3-20>.

Svensson-Arvelund, J., Mehta, R.B., Lindau, R., Mirrashkhan, E., Rodriguez-Martinez, H., Berg, G., Lash, G.E., Jenmalm, M.C., Ernerudh, J., 2015. The Human Fetal Placenta Promotes Tolerance against the Semiallogeneic Fetus by Inducing Regulatory T Cells and Homeostatic M2 Macrophages. *J. Immunol.* 194, 1534–1544. <https://doi.org/10.4049/jimmunol.1401536>.

Tafalla, C., Aranguren, R., Secombes, C.J., Castrillo, J.L., Novoa, B., Figueras, A., 2003. Molecular characterisation of sea bream (*Sparus aurata*) transforming growth factor β 1. *Fish Shellfish Immunol.* 14, 405–421. <https://doi.org/10.1006/fsim.2002.0444>.

Tzavlaiki, K., Moustakas, A., 2020. TGF- β Signaling. *Biomolecules* 10, 487. <https://doi.org/10.3390/biom10030487>.

Wahl, S.M., Hunt, D.A., Wakefield, L.M., McCartney-Francis, N., Wahl, L.M., Roberts, A. B., Sporn, M.B., 1987. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. *Proc. Natl. Acad. Sci.* 84, 5788–5792. <https://doi.org/10.1073/pnas.84.16.5788>.

Wang, X., Wen, H., Li, Y., Lyu, L., Song, M., Zhang, Y., Li, J., Yao, Y., Li, J., Qi, X., 2021. Characterization of CYP11A1 and its potential role in sex asynchronous gonadal development of viviparous black rockfish *Sebastodes schlegelii* (Sebastidae). *Gen. Comp. Endocrinol.* 302, 113689. <https://doi.org/10.1016/j.ygenc.2020.113689>.

Wang, Z.-P., Mu, X.-Y., Guo, M., Wang, Y.-J., Teng, Z., Mao, G.-P., Niu, W.-B., Feng, L.-Z., Zhao, L.-H., Xia, G.-L., 2014. Transforming Growth Factor- β Signaling Participates in the Maintenance of the Primordial Follicle Pool in the Mouse Ovary *. *J. Biol. Chem.* 289, 8299–8311. <https://doi.org/10.1074/jbc.M113.532952>.

Wen, B., Liao, H., Lin, W., Li, Z., Ma, X., Xu, Q., Yu, F., 2023. The Role of TGF- β during Pregnancy and Pregnancy Complications. *Int. J. Mol. Sci.* 24, 16882. <https://doi.org/10.3390/ijms242316882>.

Yan, S., Lyu, L., Wang, X., Wen, H., Li, Y., Li, J., Yao, Y., Zuo, C., Xie, S., Wang, Z., Qi, X., 2023. Pro-inflammatory cytokine IL1 β 1 participates in promoting parturition related pathways in the ovoviparous teleost black rockfish (*Sebastodes schlegelii*). *Biol. Reprod.* 100, 693–704. <https://doi.org/10.1093/biolre/ioab100>.

Yang, D., Dai, F., Yuan, M., Zheng, Y., Liu, S., Deng, Z., Tan, W., Chen, L., Zhang, Q., Zhao, X., Cheng, Y., 2021. Role of Transforming Growth Factor- β 1 in Regulating Fetal-Maternal Immune Tolerance in Normal and Pathological Pregnancy. *Front. Immunol.* 12. <https://doi.org/10.3389/fimmu.2021.689181>.

Yang, M., Wang, X., Chen, D., Wang, Y., Zhang, A., Zhou, H., 2012. TGF- β 1 Exerts Opposing Effects on Grass Carp Leukocytes: Implication in Teleost Immunity, Receptor Signaling and Potential Self-Regulatory Mechanisms. *PLoS One* 7, e35011. <https://doi.org/10.1371/journal.pone.0035011>.

Yang, M., Zhou, H., 2008. Grass carp transforming growth factor- β 1 (TGF- β 1): Molecular cloning, tissue distribution and immunobiological activity in teleost peripheral blood lymphocytes. *Mol. Immunol.* 45, 1792–1798. <https://doi.org/10.1016/j.molimm.2007.09.027>.

Zhan, Y., Jimmy, K., 2000. Molecular isolation and characterisation of carp transforming growth factor β 1 from activated leucocytes. *Fish Shellfish Immunol.* 10, 309–318. <https://doi.org/10.1006/fsim.1999.0239>.

Zheng, B., Lyu, L., Wang, X., Wen, H., Li, Y., Li, J., Yao, Y., Zuo, C., Yan, S., Xie, S., Qi, X., 2023. Comparative transcriptomic analysis and genome-wide characterization of the Semaphorin family reveal the potential mechanism of angiogenesis around embryo in ovoviparous black rockfish (*Sebastodes schlegelii*). *Gen. Comp. Endocrinol.* 338, 114275. <https://doi.org/10.1016/j.ygenc.2023.114275>.

Zheng, X., Boerboom, D., Carrière, P.D., 2009. Transforming growth factor- β 1 inhibits luteinization and promotes apoptosis in bovine granulosa cells. *Reproduction* 137, 969–977. <https://doi.org/10.1530/REP-08-0365>.

Zhou, J., Peng, X., Mei, S., 2019. Autophagy in Ovarian Follicular Development and Atresia. *Int. J. Biol. Sci.* 15, 726–737. <https://doi.org/10.7150/ijbs.30369>.