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L BRI L

1.l LA EMLRERNRE

S I W A i R A S O R B R R
BRI HAR ALY 5 R B AF MM 2k B R fn (fR K
(19.24+0. 85) cm, & i (295. 56 £62. 62) ), EH
FRM PSR 2 LB FRMNEREK 4.5 m, WRES 3 m, K
R 1 m. KIRAEFRAE (284 1) °C, 4 K AT 3 7K 4% i
ABEAPECA R, BURE AT — A5 30, f F e
R =R IH (MS-222) BRI, fife &) R 26 I L L L A JOE L 1
R LR A2, 1 490 22 58 FR R 81 52 V) R B
RNA F¢ S A AP R TR G A — 80 °C vk - A7
T H A HLIE R 5 AN EYFER (n=5).,
1.2 FERA bace2 EEMTIE

ffi F] TRIzol if#] (Invitrogen, 35 [E) &t S 111 [l
HZUP R BUE RNA, fff ] BD-1000 % 12 43 B3 CH M
ZRI7 - AHO K RNA v B2 st it , Jfam 2 1% B g b
BRI HL UK A RNA 52 %8 : , ffi | PrimerScript™ RT
reagent Kit with gDNA Eraser(TaKaRa, HZ4) 5 &
W8 RNA 5550 cDNA H T 520 5 7 PCR, fff
H SPARKscript Il RT Plus Kit(with gDNA Eraser)
W & CERHE IO K RNA 8453 cDNA H T3
BRI i B L FFF —20 “CHERAE

NCBI # g AW SR 2 e Jrs £ 5k DR 4 55080 » TR ke
A SR 2% R R BT W I SUR A (Cheilinus undulatus)
FEPHBHE (ASM1832078vI) 145 bace2 HPHFH1, fifi
JH Primer 5 B A 3T bace2 b T RN A 54519
(F: CGGTGCTGGCGTCTTTA; R: GGTTCTG-
CACGCTGT-CG), Lh&k)E % i 24 cDNA Hy#
M ff A 2 X Phanta Max Master Mix(Dye Plus) /&1
ELig e P ED #E4T PCR P14 O &5 1 5 47
BRI B 4Kk , /i il TIANgel Midi Purification Kit
CRAR A D 30 G 2R 17 B B R s [n1 i, 3% 22 TR
WNw . PCR W AK % : 2 X Phanta Max Master
Mix 25 pL.ddH,O 17pL. b FiFE514145 2 pl. cDNA
4 pL, PCR P HEFEF: 95 CHZEE 3 min, 95 C F 748
PE15 5,56 ‘C FIBA 15 5,72 C FIEM 2 min, 3k 35 4
TG

{#if ClonExpress II One Step Cloning Kit 7l
& G YERe  ra 50 B PCR 4lifb r= W 3% $5 28 520 =5 ol ik
1) pcDNA3. 1 &g (L pcDNA3. 1 548 5 Hek
7&K pecDNA3. 1-C 324 69 % & 11 mNG (NCBI 5
AGG56535. DIRZEHER) e NRSZ 5 41l DH5a it
SR, il 2X Taq PCR MasterMix [ (KH, 1)
IR & AT R I PCR, PCR WA % : 2X Tag PCR
Master Mix 10 pL, ddH,O 7.4 pl, . F#F51 9%

0.8 pul, ¥ 1 pl. PCR JZ N 2 ¥ 94 °C il 28 Pk
3 min, 94 °C 28 30 5,55 ‘C ik 30 s, 72 °C % {f
1 min, 3£ 30 MEFA. PR HMEEREX 24 TAY A
A
1.3 KRB A& bace?2 EEKFE S

M\ NCBI £8P v R AN R R0 ) bace2 FEH )y
HI LR 74, 6 ORF finder Chttps: /www. nc-
bi. nlm. nih. gov/orffinder/) il bace2 Pt 4t 1Y 4 I
FR 751 5 i DNAman 9 X 2 202 7 91 4 7% 43 5
ffiH MEGA 11. 0 f§ & &gt b, (i H ProtParam
(https: //web. expasy. org/protparam/ ) 7F £ 7 i L 7
At s il i ProtScale Chttps: // web. expasy. org/
protscale/) UM H: 5% (B 7K 45 {# FH SignalP 5. 0 (ht-
tps: // services. healthtech. dtu. dk/services/SignalP-
5. 0/) B HAF 5 751 s ffEH] TMHMM 2. 0Chttps: /
services. healthtech. dtu. dk/services/ TMHMM-2. 0/)
o0 L B B 45 44 3k 5 i ] NetPhos 3. 1 Chttps: /servi-
ces. healthtech. dtu. dk/services/NetPhos-3. 1/) Tii {ll]
FCWERR A 255 i F NetNGlye 1. 0 Chttps: /services.
healthtech. dtu. dk/services/NetNGlyc-1. 0/) i jil] F
N-BEFEALA 25 YinOYang 1. 2 Chttps: /services.
healthtech. dtu. dk/services/YinOYang-1.2/) T il H:
O-WEAL AL 5 3 f# PSORT TChttps: /psort. hge. jp/
form2. htmD FH0 HCY 20 g % 137 5 i F] SOPMA (https:
//npsa-prabi. ibcp. fr/cgi-bin/npsa_automat. pl? page =
npsa %620_sopma. htmD) P — g% 2544 ; {f 1 SWISS-
MODEL (https: /swissmodel. expasy. org/interactive)
OO = A A
1.4 FERBA bace?2 EEMABAR ST

f§iF Primer 5 343531 bace2 FeH b s ek
514 (F: TGCAGTGAACGGGGAAATCA; R: AGG-
GCGTAGGATATCACCCA) , Lk B-actin (F: GATGT-
CACGCACGATTTCC; R: TGCTGTCCCTGTATG-
CCTCTER NS I, LU L sA U cDNA g4
B2, 347 qPCR 43 #. fii ] ChamQ Universal SYBR
qPCR Master Mix 5] & G MERE, o D X 2g B s £
AP THI RIS R AR . qPCR i#id Stepone™
Real-Time PCR X (ABD #EAT , B4~ SOV i B = IREOAR
., qPCR WA Z K :2X ChamQ Universal SYBR
qPCR Master Mix 5 pL,ddH,O 2.6 pL, |, FiE5 19
% 0.2 pL, cDNA 2 pl., qPCR L2 7 o8« 28 T
95 “C,30 s; 28 95 °C, 10 s;iR 2k 60 °C,30 s, #EAT 40
APEER . RA 272 SR I EiH i A T 43
1.5 bace2 mRNA BRI E AL

ffiF] DIG RNA Labeling Kit (SP6/T7) (Roche,
Fit ) A bace2 BT 516 B =3 (DIG) fric 1Y 1E
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J2 U RNA 55 76 B U519 57 i U8 A 37 6 56 Fn
SP6 B & M B 31 T (ATTTAGGTGACACTAT-
AGAAGCG) . 7 NS |9 57 i s IO i 3L Fn T7 2
4 J5 3 F (TAATACGACTCACTATAGGGAGA-
CA) BB ERE K Y 500 bp, JR 7 2258454519
W 1.

®1 RERZERSSY

Table 1 Probe primers for in situ hybridization

519 JFHI"—3")

Primer

Nucleotide sequence(5’—37)

CGCATTTAGGTGACACTATAGAAG
CGAACTGGGAAGGTGAACTCGG

ISH-bace2 F

CCGTAATACGACTCACTATAGGGA

GACAGATCAGAGATCCGCGTGTGA

ISH-bace2 R

Bk St i 4 40 A 4 90 1Y) 22 5% P R [ 5 s oF
ARSI U] 5 B D) R e B3 .37 C T8,
it FH — F 2RI 0 03 UK RFIR 10 mins ffi A 10094
95 %0 .85 %670 Y0 [AIA FE MR BE £ BV MK IR 12 0 3 min;
TERE R A 1 X PBS #¥t 5 min; i 0.1 mol/L
HCI Mk 8 min, K& N IRGRIEBERRES . (1 1 1 X PBS #%
PRPYE 5 min; i & AR K(10 pg/mL)7E 37 “CHEF
FRALER 5 min; i 1 X PBS ¥4 5 min ZBRE I K;
i & 0. 25 % RERRIF (1) = C FEfE (TEA) ¥ B R AL
FH 10 min, {8 2 X SSC #£#% 10 min,

I LN 200 pl 2438 28w, 55 C iR s
1 ha ¥ RNA BREF22 8 MR E T 95 Crp AR
5 min J5 & KA M INfEER B R 3 4141,55 C
FeAZI I B R 50X 20X (1K 0. 2 X B FE Ik
£ SSC Al MABT 2 Ml R U I 283 Fr 5 1 FH 8 P 4%
I (Roche , Bty =) $HE 47 35F P A B foff ) i e g 25
A B = 2E PR (Roche Diagnostics) Rl Hb = 2= , i
JH NBT/BCIP 1# £ % (Roche. Fii 1) 75 BB % 45 10 T ik
1R 5E UG TE 286 W8 (Echo Revolve, EED T
LU E=STRE
1. 6 BACE2 & B KL 40 L 7E fix

B 1.2 AL 9R R I T B ) BRI Y 8 L JE N 7
Z ok & (TIANGEN., db 50 32 5 H 5 5k
R T AnMafG e . A 10 YOBR 4R i CEUfE, -
M) 1% HRRAER Z PR (100 X)) (& wkE, dt
50).89% DMEM }; 35 % (1 %, 22 80 B i 58 4 55 37
B, BURAARAER HEK 293T 400, T 37 “C/KI i
7:,120g &0 4 min, 775 B3, A M TR RN,
37 °C 5% CO, HiFRdNME. 540 00 58 S Al 55 705
TR B 32 250 =0 H A KRS ATk T HE e

PRI AL B0, R e R E B SR 2 35 mm
PRI RER RN (H &, 8O . T 40 % 5 R
60 %6 ~70 Y0 it i % 4417 Lipo8000TMCGE =K, |
) HEK 293T 41,48 h J5 Mg,
1.7 EHRL B ST

B B LSS E AR E R 2E (Mean S, E. ML)
For . BAEHTRH SPSS 25. 0 FAF TR &R %
78T 885 #4T Duncan 2 8 U, P<70. 05 KR 257
HAESG i2¢ 0 M, i GraphPad Prism 9. 0 ¥ 42
S8

2 AR5

2.1 REEB & bace2 BEEFIHFER R G LR

LRI bace2 FFURTEHE (Open reading frame,
ORB) KN 1 530 bp, 4if% 509 2R (LK 1),
AIEMRFH) 2 8 X iR . 4 B8 BACE2 & 3L 1R F
S5 3 &8 1 (Cheilinus undulatus ) 8% (Siniperca
chuatsi) TN B (Dicentrarchus labraz) [R) IR S ,
— AT R 93, 21% .83, 58 % Fl 83. 02% , 4k R IR
BACE2 55 Ho Ay A -8 £ 11 [R] 5P w55 T 0l 2L 23 700 7 49 2%
(L 2),

J T #E—40HF BACE2 By HE L6 R A 58 4l 8
T RGN, i A B0 S S, T FL RN
W2 o — 37, f 38— 3, i 25 1) BACE2 X5 A 2.
x5 BACE2 5§ 2RW 5 (Lates calcarifer) R
(Larimichthys crocea) 553 — 32, BLA B 5 0 R R P,
X—RREERA BB a2 A LE 3,
2.2 BACE2 EHMEWMEREST

% B 8§ i BACE2 & B & % X N
C2488 Hsss Nosz ()738 S21 9%%514%%7 55. 27 kDa, gﬁf EE“'E\
5. 105 BRI R BCN 99. 37, % E HTE LSS K
LA =N 30 h, BB bace2 FEH it
509 NEHERR , by (A LA U R RR AR 2L 44 > 7 IEH
fif MR R AL 33 A A BRI A b 52 &R (Lew) &
s, O 110 4% (WLER 2)  AFaE RECH 35. 22,
Tz E AR E

ProtScale 7 £ T Bl B 7R , 4% )& J§ 1 BACE2
A KIEHCN 0. 238, J8 TR K MR 1 1658 477
IS ER AL B /K 1 e 5 (3. 384) , FE5S 498 37 4H 2 Bk Ab
FAKME R (—1.768) (WL 4(A)), TMHMM 2.0
Server TELR AT B8, St EJE i BACE2 EHEA
2 NS EZERY (UL 4(B)) 33X 5 235 () A PE T — 2K
BACE?2 5 8 1, F 2 ) he X B FE 4. SignalP
5. 0 FELR BT 45 e WoR L SR B R i BACE2 £ Ik
Ui WG S BRE A 23 A2 (WLED D 75 IR
A5 SR A BT,



32 S N 20264

M_A N Is[ P IS L VvV 1 O A L A L S L C
61  TCC AAG TGT TTA TTT TCC ATA CCG CTC CAA GTA AAT TCA GGG AAG TTC AAC CTT TCC TCT
21_[,FS]IPL|QVNSGKFLSS
121 GCG GTG GAT TTG ACT CCT GTG CAG CAA GTC ATG TTA AAG TCT GAT GGA AAC AGC CTC TCC
44 A V. D L T P V Q Q V M L K S D G N S L S8
181 TTG GCT TCT GAT CCC ACG GGA ACC GTC AAC TTT CTG GAC ATG GTC AAC AAC TTA CAA GGA
¢¢ L A S D P T G T V N F L D M V N N L Q G
241 GAC TCT GGG AGA GGC TAT TAC ATC GAG ATG TCC CTT GGT ACC CCT GAG CAA AAG CTG AAC

81 D S G R G Y Y I E M S L G T P E Q K L N
301 ATC CTG GTT GAT ACA GGC AGC AGT AAC TTT GCC GTG GCA GCG TCT GCA CAC CCT TTC ATT
101 I L Vv D T G S S N F AV A A S A H P F I

361 ACT CAC TAC TTC AAC ACT GCT CTC TCC ACT ACA TAT GAG TCA ACC GAC CGG ACT GTG ACG
21 T H Y F N T A L S T T Y E S T D R T V T
421 GTC AGG TAC ACC CAG GGT AAC TGG GAA GGT GAA CTG GGC ATC GAC CAC GTC TCC CTC CCC
4 V R Y T Q G N W E G E L G I D H V S L P
481 AAA GGC CCT AAT GGA ACC ATC ATC GTC AAC ATA GCT GCC ATC CTC TCC TCG GAT GGC TTT
61 K G P NN ¢ T 1 1 vV N I A A I L S S D G F
541 TTC CTT CCC GGG GTC AAC TGG CAG GGC ATC CTT GGA CTG GCC TAT CCC ATG CTG GCA AGG
88 F L P G V N W Q G I L G L A Y P M L A R
601  CCG GAC TCA TCT GTG GAA CCA TTT TTC AAC TCC ATG GTG AGA CAG CTG GGC ATT CCC GAC
200 P D [ v E P F F N §$ M V R Q L G I P D
661 ATC TTC TCC CTC CAG ATG TGT GGA GCT GGA CTG TCG GCC AGC AGC ACA GCA GAC GTG GCA
» 1 F S L Q M ¢ G A G L S A S8$ S T A D V A
721 GGA GGC AGC TTT ATC ATG GGA GGG ACT GAG CCC ACT CAG TAC CTC GGA TCA GTG TGG TAC
21 G G S F I M G G T E P T Q Y L G S V W Y
781 ACC CCC ATA GTA GAG GAA TGG TAC TAC CAA GTA GAA GTT TTG AAG CTG GAA GTC GGG GAC

261 T P I Vv E E W Y Y Q V E Vv L K L E v G D
841 CAG AAT CTG GAC CTG GAC TGC CGG GAG TAT AAC ATG GAT AAA GCT ATA GTT GAC AGT GG
281 Q N L D L D C R E Y N M D K A | Vv D S G

901 ACG ACA CTG CTG CGT CTT CCT GTC AAC GTC TTC AAT GCC GTG GTG GCA GCC ATC ACA CGC
s T T L L R L P V N V F N A V V A A I T R
961 GGA TCT CTG ATC CAG GAG TTT TCT TCA GGG TTC TGG GAG GGT ACA AAG CTT GCA TGC TGG
20 G S L I Q E F S S G F W E G T K L A C W
1021 ATA AAG GGA GAG ACC CCC TGG AGG TTT TTC CCT AAG CTG TCC ATC TAC CTG AGA GCA ACG
s1 I K G E T P W R F F P K L S I Y L R A T
1081 AAC ACC AGC CAG TCA TTT CGC ATC ACC ATC CTG CCA CAG CTT TAC ATT CAG CCA ATC ACA
et N T [l ¢ s F R 1 T 1 L P Q L Y 1 Q P 1 T
1141 GAT GTG GAT GGC ACT TTA GAC TGC TAC CGC TTT GGC GTG TCT TCG TCA TCT AAT GGC CTG
3 D V D G T L D C Y R F G v [S] s s S N G L
1201 GTC ATA GGT GCT ACT GTC ATG GAG GGC TTC TAC GTG GTG TTT GAC CGT TCC AAA CGG AGA
1 V 1 G A T V M E G F Y V VvV F D R S K R R
1261 CTA GGG TTC GCA TTA AGC AGT TGT GCA GTG AAC GGG GAA ATC ACT CTG TCA GAG ATT GCA
21 L G F A L S$ S C A V N G E I T L S E 1 A
1321 GGG CCC TTC TCG GCT GCA GAT GTG GCG TCC AAT TGT TCT GGT GGG CCA CTG AAG GAG CCT
a1 G P F [l A A DV A S N C S G G P L K E P
1381 CTC CTC TGG GTG ATA TCC TAC GCC CTC ATG GCG GTC TGC GCC TTT GTC CTT_GIC ATC CIG
41 L L W V I S Y A L M A V C A F V L V [ LJ
1441 CTA CTC CTT TTA GIC CTA CCC TGC CGA CGC AGA CAC CAC TCA GGG GAG ATA ACC GAT GAG
1 |L L L L Vv|lL P C R R R H H S G E I T D E
1500 TCC TCG CTG GIT CGT CAC CGT ATC AAG TGA

st S S L V R H R I K =

R €8, 15 HE P 1) B3 B0 4 1555 I 81 3 €8 HE A ) 7 B 0 100 86 7 37 5 €8 5 RE PN ) - B s T 1) 6 4> O-WR AR 1 S 6 7 HE P 1Y
FHEFEIR 34 NBEJAL (7 &5, The letters in the orange box indicates the predicted signal peptide, the letters in the blue box indicates the predicted
transmembrane sequence, the letter in the purple box indicates the predicted O-glycosylation sites, and the letter in the green box indicates the predicted

N-glycosylation sites. )
B 1 SRS bace2 SEFZTTRIT 5 K S S 20 551

Fig. 1 The nucleotide and amino acid sequence of bace2 gene in Cheilinus chlorurus

NetPhos 3. 1 7E 268K (4 T 45 5 B, 5 B8 i LRI S5 R oR L B 8 i BACE2 & AfF7E 3 4>
BACE2 8 I W 22 28 . 75 % R 1 I 2 R 1) ik R A 57 558 TETE ) N-REFEAL A7 5, 43500 T4 37,164,361 1 2 3
S5k 35,15 Fi1 6 A4S CULIE 5(A)) . NetNGlye 1.0 7 FRAb CHLE 5(B)) ;s YinOYang 1. 2 7F 28 #4210 2 SR
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R G RJE i BACE2 & FI1EAE 6 DIETERY O—ﬂﬁﬁ&
AT S5 43 I T4 4.203.204,363,394 Fl 444 v 4,

R (WL 5(C)), SOPMA 728 8 1 15l er;ﬁﬁm,
SRR i BACE2 8 H 45 o MR HE | JE {5 | G
T2 b 0 B 20 B0 16.70%6.27.11%.51. 47%
4. 72% (LIE 5(D)), SWISS-MODEL 15 £8 %5 4 7

MR, g 28 i BACE2 £ [ = 458 KR4 S TR
Dl i HEAA B B A0 wﬂ%ﬁﬁm*@(ﬂ@ 5(E)), =44k
P 5 TR A T 45 RAHST . PSORT 11 7 2 #1F Fil
M 2% B B oR, 4 28 i BACE2 5 11 32 5 40 15 75 Ji i
(47.80%0) N JEL I (26. 10 %) FI L (8. 70 %6) Hh , i kr
PR IR LA 0 2 B A AR

Homo sapiens MGALARAILIELIACWLIRAAPFIATACETIEIRVARATNRVVASTEGEGTPAERE. . . ATCHAM T EEAT 2522 ANET ATV il FLENT
Muis musculus MGALIRAILIEVIACKLISAVPAIATACTIECVARATNHRASAVEGLGTPELER. . AEGE;ELEEVBAT. .. .ANGLAYVIE FLENL
Xenopus tropicalis ... MEVELLAVILIGAR. .CASA*IEEVSEAED’KCPVEVP PRATPEG. .. .. iﬁ iGGCI ..... :EEivﬂ ¢ PrEIL
Daniorerioc = eeeeeeen- MRLYGIILISLTFWRSHSVK JgINIFAGRFNASVCLCIRELORNERARES . Al . ... LOST : MO T
Lates calcarifer ....MAHTTSVSIWAFAFSLYFCVSRCHET @#RIYEGTYNVESAVII TEVRRVAI TSLCNCI M STETETYV . . . . . b Fjfianfe N T P TENs
Siniperca chuatsi ... .MAYTTEVSIWAFALSLYFCVSNC Y S IEIRIvFCRYNI SSCWLITEI RRVVI TSCGNGH I SDETETV . . . . . frolvii FIENS
Cheilinus undulatus ....MANTASIVIQAIATSLCFVVSKCLESIBICVNSCFENLSSAVIITEVRCVILTSLCHN SORETETV. . . .. LotV FIENS
Cheilinus chlorurus - .NANSPSIVICAIAISLCF‘\NSKC%ESECVNEGKFNLSSAVEITF‘JCCVD{IKSEGNiESiTGIV ..... $L$Vﬁ N IENS

Homo sapiens 1 Sile 11V LTCSSNEAVASHB=IZE Thakm: rime) BERCE LVTIREEENTSFL rky

Mus musculus D.Il'v.w'E'I‘ : GAPHSiEDTiESEi HSKCFEE $LVTIE$FNSQFI %Fi

Xenopus tropicalis T fErm cATNECRTTERC SKIE T FEETNT v 1avErEvncTFT I[iE i B

Danio rerio B i D Cia 222HEVRTHNEATR ST CSTERAF ot ChPgiin i Chof=lep s 1) T 2 Thia i

Lates calcarifer inEEU_ . ABPHE;ETH@NIA;E KSACRi $LICIE$ENC1MCI$L§E

Siniperca chuatsi T R NN R DHEFRITHNT T CSAGR! 85V SIjEEle ENGT I TT)he: L. ST ]
Chetlinus undulatis b i Ple b P2 sAHEFNTHNTATIE TIRESTERTY B CEsricad i Cpa ekt N T 2R Thits S)ae = £ 1 Dl
Cheilinus chlorurus 1ETREE JAL: ~ SAHEFRTHYNTAIE TINESTIRT PrvorErerneT 1 Vit 2hi L B gaRs c vy Clein
Honio sapiens I]E]EIE]EGEEEI\ER
Mus musculus Chia F EW Y Y bt T KR i e QO LS 1L b
Xenopus tropicalis EEWYYQUH 3 1
Danio rerio V@Eitﬁiiﬁﬁﬁ
Lates ealcarifer EEWYYCE T KM ER 8 QU TAT.C Ohd
Siniperca chuarsi Chigh £ FW Y Y O FA T KM ER) 8 O TR L
Cheilinus undulatus tE:Ei:Ei:EER
Cheilinus chlorurus r EEWYY QU E} E} R
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Fig. 2 Comparison of deduced amino acid sequences of BACE2 protein in Cheilinus chlorurus with other species
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Fig. 3 Neighbor-Joining phylogenetic tree based on 17 BACE2 protein sequences of vertebrates
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Table 2 Amino acid composition of BACE2 protein in Cheilinus chlorourus
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Cloning, Bioinformatic Analysis, Expression and Subcellular Localization
of Cheilinus chlorourus bace?2 Gene

Wang Qiusheng', Lian Yingying', Jiang Tianyu', Zuo Chenpeng'.
Wang Yongbo®, Qi Xin', Li Yun', Wen Haishen'
(1. Key Laboratory of Mariculture ( Ocean University of China), Ministry of Education, Qingdao 266003, China;

2. Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries
Sciences, Haikou 571126, China)

Abstract:  Cheilinus chlorourus is an important economic fish species in South China Sea. As a
carnivorous fish species lacking stomach, C. chlorourus does not express the pepsinogen gene. In this
study, to investigate whether the -site amyloid precursor protein cleaving enzyme 2 (BACE2) functions
in hydrolyzing food proteins in C. chlorourus, we employed several analytical techniques. We utilized
sequence feature analysis to characterize the gene structure, bioinformatic analysis to predict protein
function, and in situ hybridization to assess gene expression patterns of the BACE2 gene in C.
chlorourus. The results showed that baceZ2 has an open reading frame (ORF) of 1 530 bp., encodes 509
amino acids. The BACEZ2 is highly conserved in Perciformes. It was highly similar with BACE2 from C.
undulatus and Siniperca chuatsi. The predicted molecular weight of the protein was 55. 27 kDa, and its
isoelectric point was 5.10. It was a stable, hydrophilic protein with a signal peptide and two
transmembrane domains. It also had three possible N-glycosylation sites and six possible
O-glycosylation sites. Its secondary structure was mainly random coils. QRT-PCR analysis showed that
bace2 exhibited the highest relative expression level in intestine. In situ hybridization showed that bace2
widely expressed in villi and intestinal crypt. Subcellular localization revealed that BACE2 primarily
localized in cell membrane. These results suggested that BACE2 may be secreted by intestinal villus,
contributing to the hydrolysis of extracellular proteins. Our findings provided useful information for
studying the digestion of C. chlorourus and developing better artificial feeds.
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