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Septins are cytoskeletal GTP-binding proteins that play critical roles in host defense against bacterial infections.
Rainbow trout (Oncorhynchus mykiss), a commercially valuable and widely farmed salmonid species, has not
been systematically investigated with regard to its septin gene family. In this study, we identified 34 septin genes
in rainbow trout and categorized them into four subgroups based on phylogenetic relationships. Syntenic,
structural, and motif analyses revealed their conserved features, with strong domain and sequence homology

observed across species. Tissue- and gene-specific expression patterns were evaluated in healthy individuals.
Moreover, expression profiling following bacterial challenge with Vibrio anguillarum and Aeromonas salmonicida
revealed significant transcriptional changes in septin genes, suggesting their involvement in the regulation of
innate immune responses. This study provides the first comprehensive characterization of the septin gene family
in rainbow trout and highlights their complex and essential roles in host immunity, offering valuable insights into
their immunoregulatory functions in teleosts.

1. Introduction

Septins are cytoskeletal GTP-binding proteins that can self-associate,
polymerize, and bind to cell membranes [1-3]. Initially discovered in
yeast (Saccharomyces cerevisiae) mutants with defects in cell cycle
completion [4], they were later observed to localize at the septum
during cell division, leading to the designation “septin” [5]. Despite the
high conservation of septins from yeast to human (Homo sapiens) and
their presence in nearly all eukaryotic species except higher plants [6],
the quantity of septin genes exhibits remarkable variability, with only 2
in Caenorhabditis elegans, 7 in yeast, 14 in human, and 15 in channel
catfish (Ictalurus punctatus) and zebrafish (Danio rerio) [7-9]. This
variation is primarily attributed to species-specific differences in gene
duplication, which have facilitated the functional diversification of
septins in vertebrates [10]. In vertebrates, septin genes are categorized
into four subgroups according to sequence homology: SEPT2, SEPT3,
SEPT6, and SEPT7 [11].

Members of the septin gene family possess a highly conserved GTP-
binding domain, also known as the G-domain or GTPase domain. This
domain exhibits the utmost level of sequence conservation among sep-
tins and contains three prevalent GTP-binding motifs: G1 (GxxGxGKST),

G3 (DxxG), and G4 (xKxD) [5,12]. The G1 motif includes a
phosphate-binding loop (P-loop) that interacts with the phosphate
groups of nucleotides [10,13,14]. The G3 motif, comprising several
hydrophobic residues, binds Mg?" and interacts with the g and y phos-
phates of GTP. The G4 motif contributes to the selective binding of
guanine nucleotides [5,10,15]. The septin unique element (SUE), a
stretch of around 50 amino acids exclusive to septins, is located at the
C-terminal end of the G-domain, differentiating them from other small
GTP-binding proteins [16]. The SUE partially overlaps with the
GTP-binding interface and has been implicated in septin polymerization
[5,15,17]. Another distinguishing feature of Septins is their capacity to
form oligomeric core complexes that eventually assemble into
higher-order structures such as filaments, cages, rings, and gauzes,
which are essential for their biological functions [18-21].

Septins participate in a wide array of biological processes, including
cell division [18,22,23], cell migration [24], neurogenesis [11], cell
polarity [25,26], apoptosis [27], exocytosis [28], autophagy [20,29],
and phagocytosis [30]. Their involvement in bacterial infection was first
proposed in 2002 based on studies of Listeria monocytogenes invasion
[31]. Since then, septins have been implicated in host responses to
various bacterial pathogens, including Chlamydia trachomatis [32],
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Clostridium difficile [33], Salmonella Typhimurium [34], enteropatho-
genic Escherichia coli [35], Shigella flexneri [36], Staphylococcus aureus
[37], and Pseudomonas aeruginosa [38], where they play crucial roles in
host cell infection processes [39-41]. However, these investigations
have primarily concentrated on mammals, while the roles of septin genes
in fish remain largely unexplored.

Rainbow trout (Oncorhynchus mykiss) is a commercially significant
salmonid species in global aquaculture, with an annual production of
approximately 1,000,000 tonnes in 2022 [42]. Outbreaks of infectious
diseases such as vibriosis and furunculosis present serious challenges
and result in significant economic losses in trout farming. Vibrio
anguillarum and Aeromonas salmonicida are the pathogens responsible for
these diseases, respectively, both associated with high mortality in
infected populations [43,44]. To develop effective strategies for fish
disease prevention and control, it is essential to comprehend the
immune-related functional genes and their expression patterns during
bacterial infections. However, the roles of septin genes in mediating
immune responses to these infections in trout remain inadequately
characterized and require further exploration.

Previous research have indicated that V. anguillarum infection trig-
gers various pathological and immune phenotypes across different tis-
sues in rainbow trout. For instance, infections lead to inflammation and
metabolic disruption in the liver, while the intestine displays a robust
immune response accompanied by accelerated lipolysis [45]. Moreover,
Vibrio-rich bacterial communities were frequently detected in the
spleens of trout with severe lesions, indicating the occurrence of serious
bloodstream infections [46]. Based on these findings, we analyzed the
expression profiles of septin genes in the liver, intestine, and spleen
following V. anguillarum infection in rainbow trout. Furthermore, the gill
serves as the first barrier against pathogen invasion and is a known
colonization site for A. salmonicida in rainbow trout [47-49].
A. salmonicida infection activates toll-like receptor pathways, leading to
neuroinflammation and neural dysfunction in the brain, perhaps causing
anorexia and lethargy in infected trout. In the kidney, A. salmonicida
infection triggers the activation of endocrine and immunomodulatory
networks [50]. To further explore the involvement of septin genes in host
defense, we also evaluated their expression profiles in the gill, brain,
kidney, and spleen after A. salmonicida infection.

In this study, a complete set of 34 septins was identified and sys-
tematically characterized. To further investigate their immunological
roles, the expression patterns of these genes were determined in healthy
tissues and following bacterial challenge. This systematic research will
enhance comprehension of the involvement of septins in the immune
response of rainbow trout and other teleosts, serving as a basis for
further functional investigations of trout septin genes.

2. Materials and methods
2.1. Ethics statement

All of the experiments in this study were performed in compliance
with the regulations of the Animal Research and Ethics Committee of
Ocean University of China (Permit Number: 2014201) and the National
Institutes of Health Guidelines for the Care and Use of Laboratory Ani-
mals (NIH Publication No. 8023). This study did not include any en-
dangered or protected species. Furthermore, all sampled rainbow trout
were juveniles and not sexually mature; therefore, the influence of
gender was excluded from the analysis.

2.2. Identification of rainbow trout septin genes

To identify septin genes in rainbow trout, the whole genome sequence
database (GCA_013265735.2) of rainbow trout was queried via the
TBLASTN program. The query sequences were sourced from NCBI da-
tabases (https://www.ncbi.nlm.nih.gov/) and corresponded to known
Septin family members in humans and zebrafish. The E-value threshold
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of 1 x 107> was used to retrieve as many potential Septin sequences as
possible. Redundant sequences were removed using TBLASTN and
ClustalW alignment, resulting in an initial pool of candidate septin genes
for further analysis. The identified candidate septin genes were con-
verted into amino acid sequences utilizing Open Reading Frames (ORF)
Finder (https://www.ncbi.nlm.nih.gov/orffinder/). Furthermore, the
ProtParam tool (https://web.expasy.org/protparam/) was used to pre-
dict the molecular weight (MW) and theoretical isoelectric point (pI) of
each putative Septin protein.

2.3. Phylogenetic analysis of septin genes

Phylogenetic analysis was conducted to validate the annotation of
the identified septin genes in rainbow trout. Amino acid sequences of
septin genes from representative vertebrate species, including human,
chicken (Gallus gallus), mouse (Mus musculus), African clawed frog
(Xenopus laevis), goldfish (Carassius auratus), zebrafish, medaka (Oryzias
latipes), channel catfish, yellow catfish (Tachysurus fulvidraco), common
carp (Cyprinus carpio), and Atlantic salmon (Salmo salar), were retrieved
from the NCBI or Ensembl databases (http://asia.ensembl.org/index.
html) for phylogenetic tree construction (Fig. 1). Multiple sequence
alignments were performed utilizing ClustalW with default parameters.
Phylogenetic relationships were deduced employing the neighbor-
joining (NJ) method and the Jones-Taylor-Thornton (JTT) model as
implemented in MEGA 7.0. The reliability of the tree was assessed with
1000 bootstrap replicates, and gaps were eliminated via pairwise dele-
tion. The Interactive Tree of Life (ITOL) tool (https://itol.embl.de/login.
cgi) was employed to refine the visualization of the phylogenetic tree.
Additionally, rainbow trout septin genes were named according to
existing vertebrate counterparts whenever possible.

2.4. Analysis of conserved motifs, gene structure and sequences in septin
genes

Conserved motifs were identified utilizing the MEME tool (https://m
eme-suite.org/meme/tools/meme). Exon and intron information of
each septin gene were retrieved from the rainbow trout reference
genome, and gene structures were visualized using the Gene Structure
Display Server (Gene Structure Display Server 2.0). Furthermore, mul-
tiple sequence alignments of the GTP-binding domains of Septins were
conducted with ClustalW and graphically illustrated using ESPript tool
(ESPript 3.x/ENDscript 2.x). Residues of structural or functional sig-
nificance, G-motifs prevalent among most small GTP-binding proteins,
septin-specific motifs, and characteristic Septin features, were annotated
based on References [5,51].

2.5. Syntenic, collinear and chromosomal locations analysis

To explore gene identities and orthologies, syntenic analysis was
conducted. Syntenic blocks were constructed to visualize the genomic
positions of genes flanking the septin genes. Conserved syntenic regions
of septin genes in zebrafish, human, medaka, fugu, and rainbow trout
were identified using the Genomicus databases (v92.01) [52] and NCBI
genome annotation databases. Intraspecific collinearity analyses were
performed and visualized using TBtools [53,54]. The chromosomal po-
sitions of the septin genes were determined based on the coordinates
provided in the rainbow trout genome assembly. These genes were
subsequently mapped to specific chromosomes, and their genomic dis-
tribution was visualized using TBtools software [54].

2.6. Transcriptomic analysis following V. anguillarum infection

To examine septin gene expression across various tissues and in
response to V. anguillarum infection, publicly available transcriptomic
datasets were retrieved from the NCBI database (accession numbers:
PRINA667799, PRINA867038, PRJINA753277, PRJINA866872,
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Fig. 1. Consistency of amino acid sequences of Septins in rainbow trout. Amino acid sequences of Septins in rainbow trout were obtained from NCBI databases. The
data in cells indicates the percentages of consistency of amino acid sequences of Septins. “Sept” represents “Septin”.

PRJINA866205, and PRINA865462), as described in our previous studies
[45,50,55]. Briefly, brain, kidney, liver, spleen, gill, and intestine of
rainbow trout were sampled from three experimental groups: control
(CG), symptomatic (SG), and asymptomatic (AG), following V. anguil-
larum infection for RNA-Seq analysis. Clean reads were aligned to the
rainbow trout reference genome (GCA_013265735.2) utilizing Hisat2
(v2.2.1) [56]. Gene expression levels were quantified using Featur-
eCounts [57] and normalized as fragments per kilobase of transcript per
million mapped reads (FPKM). Differential expression analysis was
conducted with the DESeq2 R package [58]. Septin genes with a p-value
<0.05 and an absolute log; fold change (|logs FC|) greater than 1 were
deemed significantly differentially expressed.

2.7. Expression analysis of septin genes after A. salmonicida challenge

Juvenile rainbow trout (~10 g) were obtained from a trout farm in
Linqu (Weifang, China) and randomly assigned to either the infected or
control group. Based on our previous study [59], fish in the infected
group (two replicates, n = 20 per replicate) were intraperitoneally
injected with 0.2 mL of A. salmonicida suspension (1.0 x 108 CFU/mL),
while fish in the control group were given an equal volume of sterile
phosphate-buffered saline (PBS). At 0, 12, 24, 48, and 72 h
post-injection (hpi), fish from both groups were euthanized using
MS-222. Brain, kidney, spleen, and gill were collected, snap-frozen in
liquid nitrogen, and stored at —80 °C for subsequent analysis.

Total RNA was isolated from brain, gill, spleen, and kidney tissues
utilizing TRIzol (Invitrogen, USA) in accordance with the manufac-
turer’s protocol. First-strand ¢cDNA was synthesized from total RNA

utilizing HiScript III RT SuperMix reagent kit (Vazyme, China) for gPCR
analysis. Primers for rainbow trout septin genes were designed using
Primer 5 (Table S1). p-actin served as the internal reference gene [59].
qPCR was performed on an StepOnePlus System (Applied Biosystems,
USA) in a 10 pL reaction mixture comprising 1 pL ¢cDNA, 5 puL SYBR
®FAST qPCR Master Mix, 0.2 pL of each primer, and 3.6 pL RNase-free
water. Reactions were conducted in technical triplicates. Thermal
cycling parameters were as follows: initial denaturation 95 °C for 30s,
followed by 40 cycles of 95 °C for 10s, annealing at the primer-specific
temperature (Tm) for 30s, and extension at 72 °C for 30s. Relative gene
expression levels were calculated utilizing the 2722CT method [60].

2.8. Statistical analysis

Data are presented as mean + standard error of the mean (SEM).
Statistical analyses were performed using SPSS 21.0 software (SPSS Inc.,
USA). One-way analysis of variance (ANOVA) was conducted to eval-
uate differences in relative mRNA expression levels obtained via qPCR.
Fisher’s LSD multiple comparisons were applied under the assumption
of ANOVA, while Dunnett’s T3 method was used when the assumption
of ANOVA was not met. Statistical significance was defined as p < 0.05.

3. Results
3.1. Identification and localization of septin genes

To identify septin genes in rainbow trout, protein sequences from
human and zebrafish were utilized as queries for BLAST searches. As a
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result, a total of 34 septin genes were found in the genome of rainbow
trout. Detailed characteristics of these septins are summarized in Table 1.
Based on sequence homology, the 34 septins were classified into four
subgroups, including SEPT2, SEPT3, SEPT6, and SEPT7. The mRNA
lengths of the identified septins range from 1409 to 4657 bp. The pre-
dicted molecular weights (MW) of the encoded proteins ranged from
40.04 to 70.94 kDa, and their predicted isoelectric points (pI) values
range from 5.40 to 9.37.

High amino acid sequence similarity was observed among several
duplicated septin gene pairs in rainbow trout. Specifically, Septin2al/
Septin2a2 (99.4%), Septin5al/Septin5a2 (99.2%), Septin7bl/Sep-
tin7b2 (99.5%), Septin9al/Septin9a2 (99.5%), and Septinl2a/Sep-
tin12b (99.4%) shared nearly identical amino acid sequences.
Additionally, other pairs also exhibited strong similarity, including
Septin3a/Septin3b (98.9%), Septin6a/Septin6b (98.6%), Septin7al/
Septin7a2 (97.7%), Septin8al/Septin8a2 (98.3%), Septin8bl/Sep-
tin8b2 (96.0%), Septin9bl/Septin9b2 (96.5%), and Septinl5a/Sep-
tin15b (95.0%) (Fig. 1).

3.2. Phylogenetic analysis of septin genes

To validate the annotation and examine the evolutionary relation-
ships of septin genes, the predicted amino acid sequences of rainbow
trout, along with those from selected representative vertebrates, were
utilized to construct a phylogenetic tree. As shown in Fig. 2, the rainbow
trout septin genes clustered with their orthologs in other species, forming
four major clades: the SEPT2 (septinl/2/4/5), SEPT3 (septin3/9/12),
SEPT6 (septin6/8/10/11/14) and SEPT7 (septin7/15) subgroups. This
phylogenetic structure provides strong support for the accurate anno-
tation and classification of rainbow trout septin genes. Furthermore,
gene duplication events were evident in several rainbow trout septins.
Specifically, septin2, septin4, septin7, septin8, and septin9 each had four

Table 1
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duplicate members; septin3, septin6, and septin10 had three; and septin5,
septinl12, and septin15 each had two. In contrast, septinl and septini4,
which are exclusive to mammals, were not detected in rainbow trout.
Likewise, septin11 was absent not only in rainbow trout but also in other
teleosts. Septin13, found only in humans, has been reclassified as a
SEPT7-related pseudogene [7]. Notably, duplicated septin genes appear
to be largely restricted to teleost fish.

3.3. Syntenic analysis of septin genes

To further support orthologies, syntenic analysis was conducted by
comparing the genomic neighborhoods of rainbow trout septin genes
with those in zebrafish, channel catfish, medaka, fugu, Atlantic salmon,
and human. Syntenic blocks surrounding septin2, septin4, septin5, septin6,
septin7, septin8, septin9, and septinl12 provided additional evidence for
accurate annotation in rainbow trout (Fig. 3, S1). For instance, rainbow
trout septin6a and septin6b shared neighboring genes with human (rpl39,
upf3b, ube2a, nkrf), zebrafish (rpl39, upf3b), and medaka (upf3b, nkrf,
ube2a, elfl, pcdhl9, nkap), indicating that the genomic regions sur-
rounding the septin6 genes are highly conserved across species and
strongly support the orthology of rainbow trout septin6é genes to their
vertebrate counterparts. Collectively, integration of phylogenetic and
syntenic analyses revealed that trout septin genes exhibit strong orthol-
ogy with those in other vertebrates.

3.4. Exon-intron structure and motif analysis of septin genes

To gain a deeper understanding of the structural diversity within
rainbow trout septin gene family, exon-intron structures were analyzed
in the context of their phylogenetic relationships. Structure analyses of
the 34 septin genes indicated that the majority of septin genes contained 9
to 15 exons (excluding untranslated regions) separated by 8-14 introns

Summary of septin genes identified in the rainbow trout genome and the characteristics and GenBank accession numbers of their transcripts. Chr* stands for chro-
mosome. pl* stands for theoretic isoelectric points of proteins. MW* represents molecular weight.

Subgroup Gene Gene ID Location Chr* Protein length (aa) MW* (kDa) pI* mRNA (bp)
SEPT2 septin2al 110525804 33,227,813-33,278,199 6 348 40.10 6.11 3732
septin2a2 110536196 62,558,296-62,597,845 11 348 40.04 6.00 2706
septin2b1 110508962 31,524,273-31,540,827 28 403 45.90 5.54 2854
septin2b2 110530084 52,733,010-52,756,602 8 371 42.35 5.95 2808
septindal 110490731 43,723,357-43,737,731 15 504 57.89 5.65 2342
septinda2 110490109 43,759,762-43,788,637 15 405 46.96 6.51 1443
septin4b1 110503875 16,833,518-16,913,657 24 502 57.86 5.62 2506
septin4b2 110507706 19,571,623-19,641,866 27 571 65.02 5.60 3611
septin5al 110536199 62,600,731-62,635,778 11 377 43.88 6.17 3304
septin5a2 110525803 33,213,385-33,227,655 6 377 43.88 6.00 2526
septin5b 110523411 21,578,990-21,597,442 5 371 43.22 6.10 2362
SEPT3 septin3a 110485707 13,822,748-13,850,213 13 369 41.41 6.77 2909
septin3b 110493458 21,505,853-21,529,488 17 369 41.36 6.77 2960
septin9al 110516610 86,607,875-8,677,033 12 635 70.94 9.37 3109
septin9a2 110516540 57,303,445-57,459,461 13 633 70.74 9.37 4657
septin9b1 110493563 26,844,294-26,928,278 17 591 66.03 8.80 2035
septin9b2 110485820 18,995,717-19,079,223 13 590 65.69 8.90 2091
septinl2a 118937800 96,221,848-96,301,339 12 463 52.59 5.74 1775
septin12b 118938378 71,981,149-72,163,427 13 466 52.87 5.74 1554
SEPT6 septin6a 110488975 20,332,797-20,374,856 14 434 49.86 6.40 1547
septin6b 110505183 41,245,345-41,274,161 31 434 49.82 6.53 2151
septin8al 110533358 12,581,314-12,628,444 10 473 54.72 6.38 3761
septin8a2 110537756 52,629,937-52,677,747 12 474 54.89 6.07 2921
septin8b1 110504542 9,560,101-9,586,391 31 454 52.30 5.79 2596
septin8b2 110487785 34,307,144-34,339,240 14 441 50.97 5.40 3192
septinlOa 110527515 22,460,310-22,470,522 7 445 51.42 7.23 2818
septin10b 110495902 25,263,995-25,272,511 18 468 54.56 8.56 1409
septin10 110496360 45,342,003-45,347,556 18 425 48.96 6.69 2824
SEPT7 septin7al 110488148 24,273,279-24,317,171 32 442 51.43 8.07 2954
septin7a2 110496429 49,876,477-49,922,726 18 442 51.59 8.08 3003
septin7b1 110488078 34,384,506-34,396,588 2 426 49.56 8.49 2333
septin7b2 110515724 25,811,027-25,823,121 3 426 49.62 8.32 2527
septinl5a 110494104 66,266,850-66,298,314 2 465 54.23 7.97 3226
septinl5b 110514277 24,507,626-24,550,216 1 477 55.52 8.22 1652
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Fig. 2. Phylogenetic relationships of septin genes in rainbow trout and selected vertebrate species. The outer ring marks the name of septin subgroups, and the
different subgroups were indicated in different colors. Bootstrap (1000 replications) support values appear on the branches, and the rainbow trout septin genes were
marked with a red pentagram. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

(Fig. 4A). The exon-intron structures were relatively conserved within exclusively present in Septin9, whereas motif 12 was uniquely detected
each Septin subgroup, indicating a high degree of structural conserva- in the SEPT2 subgroup. These distinct motif patterns may contribute to
tion among phylogenetically related members. the functional divergence of septin genes in rainbow trout.

To further characterize structural features of Septin proteins, motif
analysis was performed using MEME, and sequence logos of motifs 1-16
were generated to determine the conserved amino acid residues 3.5. Chromosomal location and interchromosomal relationship of septin
(Fig. 4B). Nine motifs (1-7, 9, and 11) were shared across all Septin genes
proteins. In the SEPT2 subgroup (Septin2/4/5), ten conserved motifs

(1-9, 11, and 12) were identified, while the SEPT6 subgroup (Septin6/ A collinearity map of septin genes in rainbow trout was constructed,
8/10) and SEPT7 subgroup (Septin7/15) exhibited eleven conserved excluding chromosomes without septin genes for clarity (Fig. 5A). The
motifs (1-9, 11, and 15). In contrast, unique motifs were identified in analysis identified fifteen occurrences of septin gene segmental dupli-
specific members of the SEPT3 subgroup; for instance, motif 13 was cation in rainbow trout. Members of each Septin subgroup exhibited

pairing relationships and were distributed across different
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Fig. 3. Conserved synteny analysis of septin genes from rainbow trout using the genomes of four selected vertebrate species (human, zebrafish, channel catfish and
medaka). Genes were represented by pentagons, and the direction in which the pentagon points does not indicate the direction of the reading frames. The syntenies
were generated with the information obtained from NCBI and the Genomicus databases (v 92.01). The septin genes were marked with red-filled rectangles, and
double slashes represented a few omitted genes. (A) septin2, (B) septin6, (C) septin7, (D) septin12. (For interpretation of the references to color in this figure legend, the

reader is referred to the Web version of this article.)

chromosomes. This pattern is consistent with previous findings sug-
gesting that the separation of subgroup members across chromosomes
may contribute to maintaining functional integrity [61]. Chromosomal
mapping further indicated that the 34 septin genes were distributed
across 20 chromosomes in rainbow trout (Table 1, Fig. 5B). Notably,
septin2al and septin5a2, as well as septin2a2 and septin5al, were found in
adjacent positions on the same chromosome. Two closely related septin
genes, septin4al and septin4a2, were found on the same chromosome in
adjacent locations (Fig. 5, S1). Furthermore, the number of septin genes
varied considerably among chromosomes: seven chromosomes con-
tained two genes, two chromosomes harbored three genes, and chro-
mosome 13 possessed the highest number (n = 4). The remaining
chromosomes each carried a single septin gene. These dispersed distri-
butions suggest that interchromosomal duplication events have

contributed to the expansion of the septin gene family.

3.6. Multiple sequence alignment analysis of septin domain

Multiple sequence alignment was performed to analyze the sequence
features of the functional Septin domain (mainly including the GTP-
binding domain) among the 34 septin genes in rainbow trout (Fig. 6
and S2). The alignment revealed a high degree of conservation across
Septin domains, with an average sequence identity of 73.4%. Conserved
sequence motifs were clearly observed, including G-motifs (G1, G3, and
G4), which are characteristic of most small GTP-binding proteins [5].
Additionally, septin-specific motifs (Sepl, Sep2, Sep3, and Sep4),
together with the SUE motif, were also detected. These features are
considered signature elements that distinguish Septins from other small
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contacts with ligands from adjacent subunits across the G interface, (iii)
Mg2+—binding residues, (iv) universal switch residues, such as the cat-
alytic threonine, and (v) residues involved in salt bridge formation at the

GTPases. Furthermore, several conserved amino acid residues associated
with key structural or functional roles were annotated, including: (i)
residues directly interacting with ligands, (ii) residues forming bridging
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Fig. 6. Sequence analysis of the Septin domain in rainbow trout septin proteins. Residues highlighted in black are fully conserved among all analyzed septin
members. G-motifs, common to most small GTP-binding proteins, are indicated with blue boxes, while septin-specific motifs [5,51] are marked with black boxes.
These septin-specific motifs, along with the SUE motif (red box), are distinguishing features of septins that set them apart from other small GTPases. Residues with
structural or functional importance are annotated with colored triangles, as described below: Red triangles represent direct interactions with ligands; Black triangles
represent bridging contacts to ligands from adjacent subunits across the G interface; Purple triangles represent Mg>"-binding residues; Green triangles represent
universal switch residues, including the catalytic threonine (green boxes); Orange triangles represent residues involved in salt bridge formation at the NC interface.
The annotations are based on Reference [5,71]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

NC interface. Notably, the conserved threonine residue considered
essential for catalytic function is present in all rainbow trout septins
except those of the SEPT6 subgroup. This observation is consistent with
previous reports that SEPT6 members typically lack the catalytic thre-
onine [5], and it reinforces the subgroup-specific evolutionary and
structural divergence of septins in rainbow trout.

3.7. Expression patterns of septin genes in different tissues

The analysis of tissue expression profiles is an effective way to
further understand the physiological functions of genes. The expression
profiles of septin genes were evaluated using previously published
transcriptomic data from six tissues of rainbow trout, including the
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brain, spleen, gill, liver, kidney, and intestine under normal physiolog-
ical conditions (Fig. 7). All identified septin genes were ubiquitously
expressed across the examined tissues, although their expression levels
varied substantially. Notably, septin2b1, septin2b2, septin7bl, and sep-
tin7b2 exhibited relatively high expression in most tissues, whereas
septin4al, septin4a2, and septin9al showed consistently low expression
levels. In general, most septin genes tended to be more highly expressed
in the spleen and brain, while lower expression levels were observed in
the kidney. Furthermore, several septin genes exhibited distinct tissue-
specific expression patterns. For example, septinl5a exhibited the
highest expression in the brain; septin2b2 was most abundant in the liver
and spleen; septin2b1 was predominantly expressed in the kidney and
intestine; and septin7b2 showed the highest expression in the gill.
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Fig. 7. Heatmap of rainbow trout septin gene expression in different tissues. The examined tissues include the brain, spleen, gill, liver, kidney, and intestine. The
color depth indicates the level of expression, with red representing relatively high expression and blue representing relatively low expression. Each cell with different
color has a concrete value of log;o(FPKM+1) to represent the expression level. (For interpretation of the references to color in this figure legend, the reader is referred

to the Web version of this article.)
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Additionally, certain septin genes displayed distinct tissue specificity:
septin5b was not expressed in the liver, septin8b2 was absent from the
kidney, septin12b was highly expressed in the spleen, and both septin5b
and septin8b1 were predominantly expressed in the brain while exhib-
iting low expression in other tissues.

3.8. Expression of septin genes after V. anguillarum infection

To investigate the potential roles of septin genes in immunological
responses, the expression profiles of all 34 septin genes were examined
following V. anguillarum infection using RNA-Seq datasets. In the spleen,
septin2b2 and septinl15b were significantly downregulated in AG
compared to CG, and septin15b was also significantly downregulated in
SG relative to CG (Fig. 8A and B). In the kidney, septin15b showed sig-
nificant downregulation in both SG and AG (Fig. 8C). In the intestine,
septin3b was downregulated in SG, whereas septin5al was significantly
upregulated in SG compared to CG (Fig. 8D and E). In the liver, septin3b
and septin9a2 were significantly upregulated in SG relative to AG,
whereas septin9bl and septinl5b were significantly downregulated.
Additionally, septin4b2, septin9b1, septinl5a, and septinl15b were signif-
icantly downregulated in SG compared to CG (Fig. 8F). Most other septin
genes did not exhibit significant differential expression in response to
infection (Fig. 8).

3.9. Expression profiles of septin genes after A. salmonicida infection

To further explore the immune-related functions of septin genes, we
examined the temporal expression patterns of septin2bl, septin3,
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septin4a2, septin5al, septin6, septin7bl, septin8b, septin9b, septinl0, sep-
tinl2, and septinl5 in the brain, kidney, spleen, and gill following
A. salmonicida infection by qPCR (Fig. 9). In general, septin gene
expression levels varied among tissues, and their responses to infection
were both gene- and tissue-specific, indicating that septin genes may play
a complex regulatory role in the host immune defense of rainbow trout.

In the brain, all septin genes exhibited differential expression
following A. salmonicida infection. The expression levels of septin9b,
septin10, and septinl5 exhibited an upregulated trend at 24, 48, and 72
hpi, respectively. Conversely, other septin genes were initially down-
regulated at 12 or 24 h but their expression either returned to baseline or
exceeded control levels by 72 h. In the kidney, all septin genes were
differentially expressed following A. salmonicida infection, except for
septin5al and septinl5. Septin8b and septin12 exhibited an upregulated
trend at 24 and 48 h, respectively, but returned to baseline levels by 72
h. Other genes were initially downregulated at 12, 24 or 48 h. Addi-
tionally, septin3, septin4a2, and septin9b remained significantly lower
than control levels at 72 h, whereas septin2b1 and septin10 were signif-
icantly upregulated at that time point. In the spleen, most septin genes
were differentially expressed after infection, with the exception of sep-
tin7b, septin9b, septin10, and septin12. Septin2b1, septin3, septin4a2, and
septin15 were initially downregulated at 12 or 24 h, while septin5al,
septin6, and septin8b were significantly induced. In the gill, a similar
expression pattern was observed. Most septin genes were differentially
expressed, except for septin3, septin4a2, septin7b, and septin9b. Septin2b1,
septin10, and septinl5 were downregulated at 12 or 24 h, whereas sep-
tin5al, septin6, septin8b, and septin12 were significantly induced. Inter-
estingly, septin8b consistently showed upregulation across most time
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Fig. 8. Differential expression of septin genes in rainbow trout following V. anguillarum infection. (A, B) Expression of septin2b2 and septin15b in the spleen; (C)
septin15b in the kidney; (D, E) septin3b and septin5al in the intestine; (F) septin gene expression in the liver across different groups. Gene expression levels are
presented as fold changes relative to the control group (CG). The symptomatic group (SG) comprised the first three moribund fish exhibiting erratic swimming
behavior, while the asymptomatic group (AG) included three surviving individuals without clinical symptoms at 120 h post-infection (hpi). Asterisks indicate
statistically significant differentially expressed genes (p < 0.05, and |log, FC| > 1).
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Fig. 9. Relative expression levels of selected septin genes in the brain, kidney, spleen, and gill of rainbow trout at 0 h, 12 h, 24 h, 48 h, and 72 h post A. salmonicida
infection. (A) septin2b1, (B) septin3, (C) septin4a2, (D) septin5al, (E) septin6, (F) septin7b, (G) septin8b, (H) septin9b, (I) septin10, (J) septin12, (K) septin15. Gene
expression levels are shown relative to the control group (0 h) and presented as the mean =+ standard error of the mean (SEM) from three biological replicates.
Different letters indicate statistically significant differences between time points (p < 0.05).

points, whereas septin2bl and septin4a2 displayed a generally down-
regulated trend across all four examined tissues.

To further explore the possibility of functional Septin complex for-
mation, co-expression clustering analyses were performed (see Discus-
sion and Supplementary Figs. S3 and S4).

4. Discussion

Gene duplication has been recognized as a crucial source of evolu-
tionary novelty [62], as it generates new gene copies that may acquire
subfunctional or neofunctional roles to adapt to changing environments
[63,64]. In vertebrates, the expansion of the septin gene family has
primarily occurred through the duplication of pre-existing genes rather
than the emergence of new septin subgroups [65]. A similar pattern is
evident in rainbow trout genome, where most septin paralogs appear to
have arisen from whole-genome duplication (WGD) events [66,67].
Variations in septin gene copy number between teleosts and tetrapods
provide important insights into the evolutionary history of the septin
family. Except for a couple genes in Xenopus laevis, gene duplication has
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been predominantly observed in teleost fish, with the duplicated septin
genes likely originating from the teleost-specific WGD events [9,68]. In
comparison to other teleost species, most of which have fewer than 15
septin genes [9], rainbow trout exhibit a markedly expanded septin
repertoire (34 genes), likely resulting from salmonid-specific WGD
events [69,70]. Furthermore, collinearity analysis revealed evidence of
interchromosomal segmental duplications (Fig. 5A), and syntenic anal-
ysis confirmed these findings while also identifying additional tandem
duplication events involving septin4al and septin4a2 in rainbow trout
(Fig. 3, S1). Collectively, these findings suggest that the lineage-specific
expansions of septin genes in rainbow trout are primarily driven by
WGD, segmental duplication, and tandem duplication. Additionally,
septinl, septinl1, and septin14, which are present in mammals [71], are
absent in teleosts such as rainbow trout, zebrafish, channel catfish [9],
and starry flounder (Platichthys stellatus) [72]. The absence of septinl1,
septinl3, and septin14 in certain teleost species is likely the result of gene
loss events during evolution [63,73].

Based on gene structure and functional domain analyses of the septin
genes in rainbow trout, we found that closely related members within
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the same subgroup exhibited similar exon-intron architectures (Fig. 3A),
motif compositions (Fig. 3B), and domain structures (Fig. S2). These
conserved features may provide important clues regarding the potential
functional roles of septin genes. The number of introns in rainbow trout
septin genes ranges from eight (e.g., septin10b) to fourteen (e.g., sep-
tin7al, septin7a2, septin7b1, and septin7b2), a pattern of intron reduction
also observed in Channa argus [74]. Intron loss, as a form of genomic
variation, may influence gene regulation and expression, thereby
contributing to the evolutionary diversification of eukaryotic genes [74,
75]. In rainbow trout, such intron loss may reflect an adaptive response
during evolutionary processes. Furthermore, domain and structural
analyses revealed that rainbow trout Septin proteins display a conserved
classical architecture similar to their mammalian counterparts [5,71].
Specifically, trout Septins harbor conserved G-motifs (G1, G3, and G4),
septin-specific motifs (Sepl-Sep4), the SUE motif, and several highly
conserved amino acid residues critical for maintaining protein structure
and function. Additionally, several duplicated septin gene pairs (Septi-
n2al/2a2, Septin5al/5a2, Septin7bl/7b2, Septin9al/9a2, Septi-
nl2a/12b, Septin3a/3b, Septin6a/6b, Septin7al/7a2, Septin8al/8a2,
Septin8b1/8b2, Septin9bl/9b2, and Septinl5a/15b) exhibited more
than 95% amino acid sequence identity (Fig. 1), consistent with earlier
observations of other gene family in rainbow trout [55]. Together, these
findings suggest that the septin gene family in rainbow trout has been
highly conserved and extensively retained throughout evolutionary
history, supporting its evolutionary conservation across vertebrates.

The transcript level expression of septin genes has been extensively
studied in humans [71,76-78], but remains largely unexplored in fish,
where limited information is available. In this study, most septin genes in
rainbow trout exhibit distinct tissue- and gene-specific expression pat-
terns (Fig. 7), suggesting their potential involvement in diverse physi-
ological processes. Specifically, septin2b was highly expressed in all
examined tissues, particularly in the spleen, while septin2a showed peak
expression in the gill, liver, and spleen. Similar tissue-specific expression
patterns of septin2 were observed in other teleosts, including Labeo rohita
(liver, skin, and kidney) [79], starry flounder (trunk kidney, heart, and
peripheral blood leukocytes) [72], and channel catfish (spleen, kidney,
and gill) [9]. Other septin genes also exhibited species- and
tissue-specific patterns. Septin7b showed consistently high expression in
both channel catfish and rainbow trout. Conversely, septin5 showed low
expression in rainbow trout but high expression in channel catfish and
the kidney of starry flounder. Septin3, strongly expressed in the liver of
starry flounder, showed relatively low expression in both rainbow trout
and channel catfish. Similarly, septin8 and septin9, which are highly
expressed in the gills of starry flounder, were weakly expressed in
rainbow trout and channel catfish [9,72]. Collectively, these findings
highlight the tissue- and species-specific expression patterns of septin
genes across teleost species.

Bacterial infections are known to induce inflammatory and apoptotic
responses in rainbow trout [45,55,59]. However, the involvement of
septin genes in immune responses remains largely uncharacterized in
this species and other teleosts. In the present study, six septin gen-
es—septin2b2, septin4b2, septin5al, septin9bl, septinl5a, and sep-
tin15b—were significantly downregulated in SG or AG compared to CG
following V. anguillarum infection (Fig. 8). Similarly, all tested septin
genes, except septin8b, were significantly downregulated in at least one
tissue following A. salmonicida infection (Fig. 9). Comparable down-
regulation patterns of immune-related genes, particularly within cyto-
skeletal and lysosomal/phagosomal pathways involving septins, have
been reported in channel catfish infected with enteric septicemia. As
cytoskeletal components, septins facilitate endocytosis and macrophage
uptake. Their downregulation may reflect pathogen-induced cytoskel-
etal disruption or immune suppression [9,80,81]. Consistent findings
were reported in starry flounder, where septin2 was significantly
downregulated in the spleen after exposure to viral hemorrhagic septi-
cemia virus (VHSV) [72], and in rainbow trout following A. salmonicida
infection (Fig. 9A). Conversely, septin2 was upregulated in multiple
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tissues following viral, ectoparasitic, or bacterial infections in starry
flounder [72], L. rohita [79], and channel catfish [9], suggesting that
septin2 may play divergent immunomodulatory roles across teleost
species and infection models. Additionally, septin4 was downregulated
in mouse liver 12 weeks after Schistosoma japonicum infection, coin-
ciding with parasite-induced hepatic fibrosis progression. As septin4
promotes apoptosis, its reduction may contribute to fibrosis develop-
ment, indicating a potential protective role via apoptosis-mediated
regulation [9,82]. Comparable trends have been reported in other fish
species. In channel catfish, septin4b and septin5 were significantly
downregulated in the gill at 72 hpi after Edwardsiella ictaluri infection.
Similarly, in blue catfish (Ictalurus furcatus), septin5 was significantly
downregulated in the skin at 2, 12, and 24 hpi with Aeromonas hydro-
phila [9,83], suggesting a partially conserved role for septins in anti-
bacterial immune responses across teleosts. Notably, in zebrafish,
septinl5 is essential for host defense against Shigella flexneri infection
[84]. Its depletion during S. flexneri infection leads to severe neu-
tropenia and high mortality of zebrafish [85]. In our study, septin15b
was significantly downregulated in response to V. anguillarum but
upregulated in the brain after A. salmonicida challenge, highlighting a
complex role of septin15 in antimicrobial immunity in teleosts.

In contrast to the observed downregulation, several septin genes were
significantly upregulated at 12, 24, or 48 hpi following A. salmonicida
challenge. Specifically, septin9b, septin10, and septin15 were upregulated
in the brain; septin2b1, septin3, septin8b, and septin12 in the kidney;
septin5al, septin6, and septin8b in the spleen; and septin5al, septin6,
septin8b, and septin12 in the gill (Fig. 9). Additionally, in response to
V. anguillarum infection, only septin3b was significantly upregulated in
the intestine of symptomatic fish compared to controls (Fig. 8). These
tissue-specific expression patterns suggest that certain septin members
may be involved in immune activation during bacterial infection. Pre-
vious studies have revealed that A. salmonicida can invade the fish hosts
through the skin, gut, or gills, subsequently spreading to and colonizing
the head kidney, liver, spleen, and brain [86]. Septins are known to play
important roles in autophagy and phagocytosis [30,72,87,88]. They can
assemble into cage-like structures that entrap intracellular bacteria,
targeting them for autophagic degradation and restricting their
dissemination within the host [87]. In zebrafish, such septin cages have
been shown to function as a significant defense mechanism for in vivo
clearance of intracellular pathogens [29]. Moreover, septins form
collar-like structures at the base of the phagocytic cup in macrophages
and neutrophils to enable phagocytosis [89]. Septin2 is particularly
essential for efficient phagocytosis activity, a role that has also been
validated in aquatic species such as Apostichopus japonicus [30] and
starry flounder [72]. Consistent with our findings, septin gene upregu-
lation has been observed in other teleost species during pathogen
challenge. Specifically, septin5, septin6, septin8a2, septin9, septin10, and
septin12 were markedly upregulated in the gills of channel catfish in
response to Flavobacterium columnare challenge [9]; septin3, septin5, and
septin8 were significantly upregulated in the spleen of starry flounder
after VHSV and Streptococcus parauberis infection [72]; and septin6 was
induced in the skin of blue catfish after A. hydrophila infection [83].
Collectively, these observations support a conserved role for septin gene
upregulation in mediating host defense and suggest that the septin gene
family contributes to bacterial clearance and immune defense in
rainbow trout.

Given the complex roles of septins in cellular architecture and host
defense, understanding their higher-order assembly is essential. Septins
are known to form multimeric complexes, and their size and composi-
tion vary among species. These oligomeric assemblies, typically
composed of paralogous septins, may consist of four, six, or eight sub-
units [90]. In vertebrates, both hexameric and octameric forms have
been well characterized, with the SEPT2-SEPT6-SEPT7 hexamer being
the best-characterized structure [21,91]. Functional interchangeability
among subgroup members has also been documented. For instance,
SEPT2 can be replaced by SEPT1, SEPT4, or SEPT5, while SEPT6 may be
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substituted by SEPT11, SEPT8, or SEPT10 [3,90,92]. This molecular
flexibility allows for compositional diversity in septin complexes,
potentially enabling species- or tissue-specific adaptations. To further
explore the functional implications of septin gene expression in fish, we
analyzed the co-expression profiles of septin genes across
infection-relevant tissues and time points. Following V. anguillarum
infection, coordinated expression of SEPT2, SEPT6, and SEPT7 members
was observed in gill, liver, and intestinal tissues (Fig. S3). Representative
combinations included septin2b2 (SEPT2), septin7al (SEPT7), and sep-
tin6b (SEPT6); septin4b2 (SEPT2), septin7b1 and septin7b2 (SEPT7), and
septin10b (SEPT6); as well as septin5al (SEPT2), septin7a2 (SEPT7), and
septinlOa (SEPT6). Similarly, in response to A. salmonicida infection,
co-expression of these subgroups was also detected across several tis-
sues. In the brain (Fig. S4A), septin2b, septin7bl, and septin6b were
co-expressed; in the spleen (Fig. S4C), septin4a2, septin7b1, and septin6b
were simultaneously upregulated. In the gills (Fig. S4D), septin5al,
septin7bl, and septin8a (SEPT6) showed similar expression profiles.
These consistent patterns suggest that genes from these three subgroups
may be transcriptionally co-regulated in response to bacterial infection,
thereby supporting the possible formation of hexameric septin com-
plexes in teleost fish. Furthermore, the co-expression of SEPT3 subgroup
members, such as septin3a, septin9a2, and septin9b2, together with
SEPT2, SEPT6, and SEPT7 genes following V. anguillarum infection, may
reflect the potential formation of octameric complexes under specific
immune conditions.

In summary, 34 septin genes were identified for the first time in
rainbow trout and classified into four subgroups. Comprehensive ana-
lyses, including phylogenetic reconstruction, synteny comparison, gene
structure and motif characterization, collinearity analysis, and
conserved domain identification, provided strong evidence supporting
their annotation. Molecular evolutionary analysis indicated that septin
genes in rainbow trout are highly conserved and exhibit strong homol-
ogy with those in other teleosts. Expression profiling indicated that the
majority of septin genes were ubiquitously expressed across six tissues
and were significantly regulated in response to bacterial infections,
suggesting their roles in host immune defense. Collectively, these find-
ings offer important insights into the evolutionary conservation and
immunological functions of the septin gene family in rainbow trout.
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