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Oogenesis, encompassing folliculogenesis, development, and maturation, is a complex physiological process that
is not solely regulated by gonadotropins but is also actively influenced by multiple growth factors produced by
the oocyte and its surrounding follicular cells. The Japanese eel (Anguilla japonica) has a complex life history,
resulting in many uncertainties regarding its growth, development, and reproduction. Under artificial culture
conditions, oocyte development in the Japanese eel is arrested and can only progress to the vitellogenic stage
through artificial induction. In the present study, we observed that, despite receiving the same hormone treat-
ment as normally developing individuals, a small proportion of female eels exhibited oocytes arrested at the
perinucleolar stage. Transcriptome analysis revealed that differentially expressed genes are involved in multiple
reproductive-related physiological processes and functional pathways, such as tachykinin system, MAPK
signaling pathway, steroid-related pathways, oocyte meiosis, Wnt signaling pathway and GnRH signaling
pathway. The abnormal expression of the two follicle-stimulating hormone (FSH) subunit genes may be a key
factor contributing to this phenomenon. This study reveals the underlying causes of ovarian developmental arrest
in hormonally induced female Japanese eels from the perspective of the brain-pituitary-gonad (BPG) axis,
providing a research foundation for the artificial reproduction of Japanese eels.

1. Introduction formation, the follicle enters the vitellogenic phase, marked by the

accumulation of lipids and vitellogenin. During this phase, levels of

Oogenesis is a complex biological process that involves several
physiological stages. The initial phase includes the formation of pri-
mordial germ cells (PGCs) and their transformation into oogonia (Patino
and Sullivan, 2002). Subsequently, oogonia develop into oocytes and
form follicles, which are accompanied by surrounding follicular layer
cells (Selman et al., 1993). As meiosis begins, the follicles enter the
primary growth phase, during which they can develop independently of
pituitary gonadotropic hormones (Gth), a phase known as the GTH-
independent phase (Billard, 1992). Follicular development then pro-
gresses to the secondary growth phase, which also marks the onset of
puberty, characterized by the appearance of cortical vesicles (Chen
et al., 2022). In fish, puberty is the period during which an individual
becomes capable of sexual reproduction, signifying the functional
competence of the brain-pituitary-gonad (BPG) axis (Jalabert, 2005;
Schulz and Goos, 1999; Weltzien et al., 2004). After cortical vesicle
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follicle-stimulating hormone (FSH) and estradiol in the blood increase,
along with FSH receptor expression in the ovaries (Ge, 2005; Santos
et al., 2001). At this stage, the oocyte accumulates essential nutrients,
including maternal messenger RNA, proteins, lipids, carbohydrates, vi-
tamins, and hormones, all of which are critical for embryo development
(Lubzens et al., 2010). After nutrient accumulation, the follicles enter
the maturation phase, characterized by the resumption of oocyte
meiosis. This phase includes the breakdown of the germinal vesicle
(GVBD), the cleavage of vitellogenin into yolk proteins, and the hydra-
tion of the oocyte (Clelland and Peng, 2009). Following the extrusion of
the first polar body, the oocyte enters meiotic metaphase II and is
expelled from the follicle (Nagahama et al., 1995). At this point, the egg
is capable of fertilization (Brooks et al., 1997).

The Japanese eel (Anguilla japonica) is a significant aquatic species
with considerable economic value in the aquaculture industries of East
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Asia. As a catadromous migration fish, the Japanese eel exhibits a
complex life history, which presents challenges in understanding
various aspects of its growth, development, and reproduction. The
artificial reproduction of the Japanese eel remains a major unresolved
issue globally. Despite significant advances over the past century
through continuous research, successful industrial-scale reproduction
has yet to be achieved (ljiri et al., 2011; Tanaka et al., 2001; Tanaka
et al., 2003).

Under artificial culture conditions, the ovary of the Japanese eel can
only develop to the cortical vesicle stage and fails to progress to the
vitellogenic stage. As a result, current research on the reproduction of
the Japanese eel relies on the artificial induction of parent fish. In a
previous experiment, we observed that oocytes from a small proportion
of female individuals exhibited undeveloped ovaries, arrested at the
perinucleolar stage, despite receiving the same hormone treatment as
the fully developed individuals. In this study, we conducted a tran-
scriptome analysis of brain (including pituitary) and ovary tissues from
both normally developed and undeveloped Japanese eels. Our aim was
to investigate the underlying causes from the perspective of the brain-
pituitary-gonad axis, thereby providing practical insights and theoret-
ical support for the artificial reproduction of Japanese eels.

2. Materials and methods
2.1. Animals

All fish experiments were approved by the respective Animal
Research and Ethics Committees of Ocean University of China (Permit
Number: 20141201). The present study did not involve endangered or
protected species.

All female Japanese eels weighed between 0.8 and 1.0 kg and were
sourced from a wholesale aquatic market in Qingdao, China. After a one-
month seawater acclimatization period, the eels were administered in-
jections of human chorionic gonadotropin (hCG) (NSHF, Ningbo, China)
and luteinizing hormone-releasing hormone analogues (LHRH-A2)
(NSHF, Ningbo, China). Injections were administered once a week for a
total of 10 weeks. Prior to sampling, all eels were anesthetized using an
appropriate anesthetic, and the samples were immediately stored under
proper conditions.

2.2. Haematoxylin-eosin (H&E) staining

Ovarian tissues were fixed in 4 % paraformaldehyde, embedded, and
sectioned into 7-um slices. The sections were stained with hematoxylin
and eosin and subsequently observed and photographed under an
Olympus bright-field light microscope (Olympus, Tokyo, Japan).

2.3. RNA extraction

Total RNA was extracted using SparkZol Reagent (Sparkjade, Jinan,
China). RNA quantity and quality were assessed using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, USA).

2.4. RNA isolation and library construction

RNA was extracted from the brain (including pituitary) and ovarian
tissues of six Japanese eels (n = 3 per group) for transcriptional analysis.
The NEBNext® Ultra™ RNA Library Prep Kit for [llumina® (NEB, United
States) was employed to generate nine sequencing libraries according to
the manufacturer, and index codes were added to attribute sequences to
each sample. The samples were sequenced on an Illumina HiSeq X Ten
platform, and 150-bppaired-end reads were generated.

General and Comparative Endocrinology 367 (2025) 114729

2.5. Differentially expressed genes (DEGs) identification and enrichment
analysis

The clean data obtained by removing low-quality sequences and
adaptors of raw read were aligned to the reference Anguilla japonica
genome (PRIJNA852364) with HISAT2 (Kim et al., 2015). The quanti-
fication analyses were accomplished using the StringTie software
(Pertea et al., 2016). Specifically, the multiple mapped reads were
removed, and the count numbers of unique mapped reads and FPKM
(Fragments Per Kilobase Per Million) were assessed and normalized with
previous references (Anders et al., 2015). Principal component analysis
(PCA), referred to investigate the relationship between groups, was
performed by the ggplot2 package.

With a cutoff “padj” < 0.05 and absolute foldchange values greater
than 1, statistical analysis of transcripts was marked as significantly
differentially expressed genes (DEGs) using the DESeq2 package. Addi-
tionally, the DEGs were assigned to Gene Ontology (GO) classification
by the aid of the Blast2GO program with the p-value threshold < 0.05
(Gotz et al., 2008), meanwhile Kyoto Encyclopedia of Genes and Ge-
nomes pathway enrichment analysis (KEGG, a database of biological
systems, https://www.genome.jp/kegg/) was performed to significant
pathway enrichment analysis. Cluster Profiler R package was employed
to test the statistical enrichment of DEGs in KEGG pathways with the
threshold of p-value threshold < 0.05 (Kanehisa et al., 2017).

2.6. Protein-protein interaction (PPI) analysis and hub gene identification

The protein sequences of DEGs in the BP and O groups were extracted
separately using TBtools software (Chen et al., 2020), and the PPI
network was predicted using the STRING website (https://cn.string-db.
org/). Only interaction relationships with confidence greater than 0.4
were considered reliable and imported into Cytoscape software for hub
gene identification and visualization (Yu et al., 2024). The hub genes
were identified using the degree algorithm in the cytoHubba plugin
(Zhang and Feng, 2023).

3. Results

3.1. Morphological and histological observation of Japanese eels with
normal and undeveloped ovaries

As shown in Fig. 1, the pectoral fin of Japanese eels with developed
ovaries appeared black, and a large ovary was visible upon dissection of
the abdominal cavity. Histological examination of ovary tissue sections
revealed that the follicles were in the vitellogenic stage. In contrast, the
pectoral fin of Japanese eels with undeveloped ovaries was gray and
transparent, and the ovaries were noticeably small. Histological obser-
vations revealed that the follicles were at the perinucleolar stage.

3.2. Analysis report of brain and pituitary transcriptome

Six groups of cDNA libraries from six Japanese eel brain and pituitary
tissues were performed to make transcriptional analysis (n = 3). In total,
271,506,286 raw reads were obtained by sequencing, and the raw reads
were filtered to 261,988,718 clean reads. The average clean reads of
undeveloped group (BP_UD) and developed group (BP_D) were
44,216,015 and 43113558, with Q30 average percentages of 92.77 and
92.98, respectively (Supplementary material 3). The BioProject acces-
sion number of raw sequence is PRJINA1212544 on the Short Read
Archive (SRA) of the National Center for Biotechnology Information
(NCBID).

As shown in Fig. 2A, the PCA demonstrated significant differences
between the BP_UD and BPD groups. A total of 624 DEGs
(Supplementary material 1) were identified in BP_UD vs BP_D group, of
which 220 genes were up-regulated and 404 genes were down-regulated
(Fig. 2B). In this study, we focused on down-regulated genes in BP_UD vs
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H&E stain

Fig. 1. Comparison of Japanese eel pectoral fins, ovaries, and ovarian histological observations with normal and abnormal ovary development, respectively.
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Fig. 2. (A) PCA of the six libraries in the brain and pituitary transcriptome (BP_UD1, BP_UD2, BP_UD3, BP_D1, BP_D2, BP_D3). (B) The Volcano plots for the brain
and pituitary transcriptome. (C) GO terms of down-regulated DEGs in BP_UD vs BP_D. (D) KEGG analysis of down-regulated DEGs in BP_UD vs BP_D. The red square
in (C, D): The key GO terms and KEGG pathways enriched by the differentially expressed genes related to reproduction.

BP_D group. GO enrichment analysis showed that down-regulated genes
were enriched in terms such as hormone activity, steroid binding, activation
of MAPKKK activity, steroid hormone receptor activity and tachykinin re-
ceptor signaling pathway (Fig. 2C). KEGG enrichment analysis identified
20 pathways. Among them, there were Progesterone-mediated oocyte
maturation, oocyte meiosis, GnRH signaling pathway and MAPK signaling
pathway related to ovary development (Fig. 2D).

3.3. Analysis report of ovary transcriptome

Six cDNA libraries of Japanese eel ovaries were constructed and
sequenced on the Short Read Archive (SRA) of the National Center for
Biotechnology Information (NCBI) (Accession number:
PRJNA1212544). A total of 252,963,514 raw reads were obtained by
high-througthput sequencing, and 243,886,866 clean reads were
filtered. In addition, the average clean reads of undeveloped group
(O_UD) and developed group (O_D) were 37,568,232 and 43727390,
with Q30 average percentages of 94.24 and 94.23, respectively
(Supplementary material 3).

The PCA demonstrated significant differences between the O_UD and

w

O_D groups (Fig. 3A). In total, 802 significant DEGs (Supplementary
material 2) were identified, including 600 up-regulated genes and 202
down-regulated genes in O_UD group compared with O_D group
(Fig. 3B). GO enrichment analysis showed that down-regulated genes
were classified into molecular function (terms: DNA helicase activity,
DNA binding, hydrolase activity, acting on acid anhydrides, etc.), cellular
component (terms: integral component of endoplasmic reticulum mem-
brane, Golgi apparatus, nucleolus, etc.), and biological process (terms:
rRNA base methylation, negative regulation of intrinsic apoptotic signaling
pathway, regulation of transcription, DNA — templated, DNA replication,
etc.) (Fig. 3C). As shown in Fig. 3D, Wnt signaling pathway, Metabolic
pathways, steroid biosynthesis, GnRH signaling pathway, and Protein pro-
cessing in endoplasmic reticulum related to ovary development were
identified by KEGG enrichment.

3.4. PPI network and hub genes of O and BP tissue
To explore the correlations of these DEGs, the PPI networks were

constructed, and the hub genes were identified. As shown in Fig. 4, there
were 327 nodes and 476 edges in BP groups, 87 nodes and 94 edges in O
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Fig. 3. (A) PCA of the six libraries in the ovary transcriptome (0O_UD1, O_UD2, O_UD3, O_D1, O_D2, O_D3). (B) The Volcano plots for the ovary transcriptome. (C) GO
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Fig. 4. Protein-Protein interactions (PPI) network of DEGs and the identified hub genes for (A) BP groups, (B) O groups, respectively. The top 50 nodes of degree
were visualized. The color of the nodes represented the degree and the hub gene is located in the middle of the PPI networks.

groups, respectively. For BP groups, a total of 10 genes, including ins,
ubb, pde6gb, rps16, aprt, btk, ccnal, ccd4-1, fshb and nt5e were considered
as hub genes (Fig. 4A). Special attention should be given to btk, ccnal
and fshb, whch related to ovary development. For O groups, a total of 10
genes, including lig4, blm, dna2, smc5, aspm, knl1, mcphl, jun, ercc6l and
cdca7a were considered as hub genes (Fig. 4B). It is particularly note-
worthy that aspm and mcph1 participate in gonad development.

4. Discussion

The follicle, composed of an oocyte and surrounding follicular cells,
represents the fundamental structural and functional unit of the ovary
(Chen et al., 2022). Oogenesis, which encompasses folliculogenesis,
growth, and maturation, is a complex physiological process involving
multiple endocrine regulatory mechanisms (Lubzens et al., 2010;
Nagahama et al., 1995; Xu et al., 2010). In tiger puffer (Takifugu rubri-
pes), transcriptome analysis of the ovary at different developmental

stages suggests that multiple genes in ovarian steroidogenesis, estrogen-
mediated signaling pathways, and TGF-p signaling pathways exhibit
differential expression at various stages of development, implying that
these genes play important roles in ovarian development (Hu et al.,
2025). In studies of the Greater Amberjack (Seriola dumerili), it was
found that genes involved in steroid hormone biosynthesis, lipid meta-
bolism, and the arrest and resumption of meiosis exhibit differential
expression during ovarian development from stages IIl to V (Yang et al.,
2025). Furthermore, dysfunction of certain genes can lead to repro-
ductive disorders, as demonstrated in both female and male fish studies
(Lavecchia et al., 2023, 2024). These findings suggest that oogenesis is
not solely regulated by gonadotropins (GtH), but rather is actively co-
ordinated through the influence of multiple growth factors produced by
both the oocyte and its surrounding follicular cells (Ge, 2005; Li et al.,
2023; Monget and Bondy, 2000; Song et al., 2022).

In this study, we observed that a small proportion of female Japanese
eels subjected to artificial induction had very small ovaries, resembling
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those of underdeveloped individuals. Histological examination revealed
that their follicles were at the perinucleolar stage. Furthermore, differ-
ences in pectoral fin coloration further indicated the varying degrees of
ovarian development between the two groups of female Japanese eels
(Okamura et al., 2007). This phenomenon may be caused by the
abnormal expression of certain reproduction-related genes. Therefore,
to investigate the potential causes of abnormal ovarian development in
some Japanese eels, this study conducted a transcriptional analysis from
the perspective of the brain-pituitary-gonad axis.

In the transcriptomes of the brain and pituitary, differential genes
were enriched in the tachykinin receptor signaling pathway, including
the tac1 gene. The tachykinin (TAC) family is involved in the regulation
of neuropeptide secretion and plays a role in regulating GnRH synthesis
and secretion (Dahl et al., 2009; Kinoshita et al., 2005), as well as the
initiation of puberty during gonadal development (Bhangoo and
Jacobson-Dickman, 2009; Topaloglu et al., 2009). Studies in mice (Mus
musculus) have shown that knockout of tacl inhibits follicular devel-
opment (Kawada et al., 2025). The low expression of the tacl may
inhibit the development of primordial follicles in Japanese eels, poten-
tially contributing to the ovarian developmental issues observed in this
study.

MAPK (mitogen-activated protein kinase) is a crucial mediator of
signals from the cell surface to the nucleus, playing key roles in cell
proliferation, differentiation, carcinogenesis, metastasis, and apoptosis
(Gao and Zheng, 2024). Research has demonstrated that the MAPK
signaling pathway also plays essential roles in gonadal development
(Paranjpe et al., 2024; Ren et al., 2024). The MAPK signaling pathway
and activation of MAPKKK activity were enriched in the brain and pi-
tuitary transcriptomes, with differential expressed genes such as gadd45,
ntf3, hgf, and nr4al. In mice, gadd45 is involved in gonadal differenti-
ation and development (Johnen et al., 2013). NTF3 is associated with
the proliferation of ovarian cells (Chen et al.,, 2025). HGF regulates
folliculogenesis and steroidogenesis by modulating the function of
follicular membrane cells and granulosa cells in the ovary (Mi et al.,
2024). In studies of the Jinhu groupers (Epinephelus fuscoguttatus @ x
Epinephelus tukula &), differential expression of nr4al was found to
potentially influence the rate of gonadal development (Qiu et al., 2024).
These findings suggest that the aforementioned genes may be involved
in the abnormal ovarian development observed in Japanese eels in this
study.

DEGs in oocyte meiosis pathway were significantly enriched in the
brain and pituitary transcriptome. Meiosis accompanies the whole
process of oogenesis, both the initiation of meiosis in the early devel-
opmental stage and the resumption of meiosis in the mature stage are
essential during oogenesis (Bowles and Koopman, 2007; Fabra et al.,
2006; Swain, 2006). In this study, differential genes associated with
meiosis include igf1, adcy3, and smc1b. Studies have shown that IGF-I is
closely associated with granulosa cell mitosis at the onset of vitello-
genesis (Kagawa et al., 1995), while ADCY3 is crucial in the activation of
primordial follicles (Zheng et al., 2023). The deletion of the smc1b gene
leads to dysfunction of cadherin proteins and results in the loss of
fertility in mice (Takabayashi et al., 2009).

Sex steroid hormones play a crucial role in yolk accumulation and
oocyte maturation (Nagahama and Yamashita, 2008; Nakamura et al.,
2005). During early vitellogenesis, serum estradiol levels increase
significantly, promoting the synthesis and secretion of vitellogenin by
the liver, which is essential for vitellogenesis (Lubzens et al., 2010;
Peyon et al., 1996; Tyler et al., 1991). As the final stage of oogenesis,
maturation is closely regulated by steroid hormones (Goetz, 1997; Goetz
and Garczynski, 1997). At this stage, follicle cells transition from pri-
marily producing estradiol to synthesizing maturation-inducing ste-
roids, which activate maturation-promoting factors in the oocyte,
thereby facilitating maturation (Lubzens et al., 2010; Nagahama and
Yamashita, 2008).

The analysis of the two transcriptomes revealed that differential
genes were enriched in steroid-related functions, such as steroid binding
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(prgr), steroid hormone receptor activity (prgr, nr4al, nr5a2), steroid
biosynthesis (cypl1al, cyp24al, cyplbl, srd5a2), and the progesterone-
mediated oocyte maturation (ccnal, igf1, adcy3, gnail). Prgr is involved
in the generation of 20a-hydroxysteroid dehydrogenase in the corpus
luteum (Sugino et al., 1997). During steroidogenesis, nr4al regulates the
transcription of key steroidogenic enzymes in ovarian membrane cells,
while the deletion of nr5a2 affects follicular development and ste-
roidogenesis (Han et al., 2025; Li et al., 2010). Among the differential
genes in the steroid biosynthesis signaling pathway, cyp11al and cyp1bl
have been confirmed to play roles in steroidogenesis in multiple species
(Chaube et al., 2021; Li et al., 2024; Yang et al., 2025), while cyp24al is
involved in the metabolism of vitamin D3, thereby regulating the
reproductive process (Hrabia et al., 2023). Srd5a2 is highly expressed in
the ovary during the luteal phase, suggesting that it may be involved in
progesterone synthesis (Liu et al., 2020). In the progesterone-mediated
oocyte maturation signaling pathway, over expression of ccnal pro-
motes the resumption of meiosis but also inhibits oocyte maturation,
which may be related to its involvement in regulating the production of
maturation-inducing steroids (Li et al., 2020). IGF-1 has been shown to
participate in gonadal steroidogenesis in Acipenser ruthenus (Wuertz
et al., 2007) and regulate the expression of P450 aromatase in the ovary
(Nakamura et al., 2003). ADCY3 is involved in regulating the expression
of estrogen receptors, while gnail plays a role in regulating
progesterone-mediated oocyte maturation (Redei et al., 2021; Yang
et al., 2018). It can be inferred that the abnormal expression of steroid-
related genes is one of the potential causes of ovarian developmental
abnormalities in Japanese eels observed in this study.

In the ovary transcriptome, differentially expressed genes were
significantly enriched in Wnt signaling pathway. Studies in mice have
shown that Wnt signaling pathway is involved in the activation of pri-
mordial follicles (Takase et al., 2024). In Gallus gallus, Wnt signaling
pathway participated in the proliferation of ovarian granulosa cells and
could regulate the cell cycle (Ma et al., 2024; Nie et al., 2024). In this
study, the enriched reproduction-related differential genes include
bambi and axinl. Research has shown that bambi is regulated by follicle-
stimulating hormone (FSH) and plays a role in oocyte development,
while the deletion of axinl can lead to abnormalities in meiosis (Bai
et al., 2014; He et al., 2016). This suggests that the Wnt signaling
pathway plays a crucial role in ovarian development, and the abnormal
expression of certain genes within this pathway may lead to ovarian
developmental failure.

The GnRH signaling pathway is a key regulator of ovarian develop-
ment and plays a crucial role in oogenesis (Laws et al., 2014; Leng et al.,
2024; X. Li et al., 2022). In this study, both transcriptomes showed
differential genes enrichment in the GnRH signaling pathway, including
adcy3, gnrhr4, cga, and fshb. In the pituitary of grass carp (Ctenophar-
yngodon idella), the expression level of gnrhr4 is significantly higher than
that of the other three gonadotropin-releasing hormone (GnRH) re-
ceptors, which indicates its crucial role in mediating GnRH signaling (W.
Li et al., 2022). Cga and fshb, as the two subunits of follicle-stimulating
hormone (FSH), directly influence FSH levels, thereby further affecting
ovarian development (Nagahama et al., 1995). We speculate that the
abnormal expression of cga and fshb is a key factor contributing to
ovarian developmental failure in Japanese eels.

PPI analysis revealed the interaction relationships among differential
genes, involving several genes associated with gonadal development,
including btk, ccnal, fshb, aspm, and mcphl. Ccnal and fshb have been
discussed earlier. Additionally, studies have shown that btk is involved
in ovarian angiogenesis (Zippo et al., 2004). In mice, mutations in the
mcphl lead to infertility and the development of ovarian tumors in fe-
males, while mutations in the aspm result in a reduced number of fol-
licles and a decrease in ovarian size (Liu et al., 2021; Mori et al., 2022;
Wang et al., 2022).

In this paper, we investigated the underlying causes of ovarian
developmental failure in artificially induced Japanese eels. Tran-
scriptome analysis revealed that differentially expressed genes were
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involved in multiple physiological processes and functional pathways
related to gonadal development. Notably, the abnormal expression of
cga and fshb, the two subunits of FSH, was identified as a key factor
contributing to ovarian developmental failure. Additionally, several
other reproduction-related genes were also implicated in this process.
Therefore, we propose that ovarian developmental abnormalities in
Japanese eels result from the combined effects of multiple genes, ulti-
mately leading to abnormal ovarian development and follicular arrest at
the perinucleolar stage.
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