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ABSTRACT

Genotype imputation following low-coverage whole genome sequencing (IcWGS) data offers a cost-effective
approach for genotyping large populations, with significant potential to accelerate genomic selection in
breeding programs. For spotted sea bass (Lateolabrax maculatus), genetic improvement is urgently required due to
the degeneration of genetic traits and long generation intervals. However, the high costs associated with high-
coverage WGS (hcWGS) for large populations have delayed breeding progress. To address this gap, the pre-
sent study conducted a comprehensive evaluation of genotype imputation for IcWGS data down-sampled from
1107 individuals across four hcWGS datasets and aimed to develop an efficient imputation pipeline utilizing
1cWGS data for spotted sea bass. Initially, 100data dataset was selected to preliminary assess the performance of
various imputation pipelines. BEAGLE was excluded due to its lower accuracy and redundant computational
requirements, while STITCH and GLIMPSE2 were retained for subsequent analyses. The effects of reference and
target data on GLIMPSE2 imputation were then evaluated, identifying the optimal strategy for constructing the
reference panel prioritizes population genetic diversity over sample size to maximizes imputation accuracy. It
also highlighted the critical role of population structure, genetic relatedness and linkage disequilibrium (LD)
level between reference and target data for imputation accuracy. Additionally, the imputation accuracy of
STITCH and GLIMPSE2 was compared across three datasets, with GLIMPSE2 imputation using the optimal
reference panel emerging as the most effective imputation pipeline for spotted sea bass. Finally, we demonstrated
that IcWGS data combined with GLIMPSE2 imputation achieves predictive accuracy comparable to hcWGS data
in genomic prediction. Our study presents an optimized workflow to impute lcWGS data in spotted sea bass and
establishes the first publicly available reference panel with the highest known genetic diversity. This resource
lays a crucial foundation for future genomic selection and breeding programs and serves as a valuable reference
for genotype imputation in other aquaculture species.

1. Introduction

complex traits through genome-wide association studies (GWAS) and
accelerating genetic breeding programs via genomic selection (GS)

The rapid advancement of high-throughput genome sequencing
technologies has spurred the development and application of diverse
genotyping methods, including whole genome resequencing (WGS),
single nucleotide polymorphism (SNP) arrays, and reduced representa-
tion sequencing (RRS), for population-level genetic variation studies
(Peng et al., 2016; Zhang et al., 2023; Zhou et al., 2019). These methods
have become fundamental tools in revealing the genetic architecture of
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(Georges et al., 2019; Gong et al., 2021; Visscher et al., 2017). While
low- and medium-density SNP panels from arrays or RRS are
cost-effective, WGS provides superior GWAS resolution and accuracy in
identifying candidate loci due to its ultra-dense SNP coverage
(Fernandes Garcia et al., 2022; Hoglund et al., 2019). Similarly, accurate
genomic prediction (GP) requires high-density SNP data across large
cohorts (Theshiulor et al., 2016; Tsai et al.,, 2017). However, the
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prohibitive cost of high-coverage WGS genotyping for large populations
remains a major barrier, limiting its widespread application in GWAS
and GS for aquaculture breeding programs. Consequently, developing
cost-effective strategies to obtain high-density genotype data has
become an urgent priority.

To bridge this gap, low-cost genotyping strategies coupled with ge-
notype imputation have thus emerged as a cost-effective solution to
obtain high-density genotype data across large populations at minimal
expense (Huang et al., 2012; Tsai et al., 2017). Genotype imputation
typically involves two key steps: (1) constructing haplotype reference
panels (HRPs) using high-density genotyping data from represented
individuals, and (2) inferring and imputing missing genotypes or
ungenotyped markers in low-density SNP panels (Browning and
Browning, 2009); (Davies et al., 2016); (Zhang et al., 2022). These ap-
proaches maximize the utility of genomic data by imputing low-density
SNP panels to high-density SNP data, even up to WGS level, and have
been successfully applied in several breeding programs for economically
important livestock and crop species (Fernandes Junior et al., 2021;
Hayes et al., 2012; Hickey et al., 2012). Despite their success, several
challenges in these imputation approaches remain unresolved. For
example, common SNP arrays are more prone to bias in capturing ge-
netic variation and are limited in detecting novel variants compared to
WGS, thereby constraining imputation accuracy (Lachance and Tishkoff,
2013; Zhang et al., 2023). Additionally, high-quality HRPs for compre-
hensive genome-wide imputation are often unavailable for non-human
species, necessitating the construction of HRPs from high-coverage
WGS data of the same or closely related populations, which can be
leveraged to significantly improve imputation accuracy (Hayward et al.,
2019; Ji et al., 2019; Sargolzaei et al., 2014). Therefore, array-based
genotype imputation in aquaculture species has primarily focused on
Atlantic salmon (Salmo salar) and Nile tilapia (Oreochromis niloticus),
both globally significant breeding species with high-quality commercial
SNP arrays and well-established breeding programs (Fernandes Garcia
et al., 2022; Tsai et al., 2017; Tsairidou et al., 2020; Yoshida and Yanez,
2021). The lack of SNP arrays and established pedigree populations for
most aquaculture species continues to hinder the widespread applica-
tion of array-based genotype imputation in breeding programs (Zhang
et al., 2021).

Given these challenges, low-coverage whole genome sequencing
(IcWGS) has emerged as a promising, low-cost alternative for the
imputation of complete genotypes (Pasaniuc et al., 2012). Compared
with SNP array and RRS strategy, lcWGS maximizes coverage breadth at
the expense of sequencing depth, capturing more comprehensive genetic
variation of whole genome, including population-specific variants (Lou
et al., 2021). The use of IcWGS provides greater power for GWAS in
detecting associated signals compared to SNP arrays (Alicia et al., 2021;
Arthur et al., 2019; Gilly et al., 2016). Moreover, genotype data gener-
ated by 1cWGS can be further imputed to WGS level using genotype
imputation strategies, which mainly including two categories: those
relying on genotype reference panels and reference-free approaches
(Zhang et al., 2021; Zhang et al.,, 2022). For instance, using a
high-quality reference panel phased by Beagle v5.4, 1lcWGS data
imputed with GLIMPSE2 achieved an average concordance rate greater
than 0.99 in cattle (Zhang et al., 2023). Similarly, STITCH imputation, a
reference-free imputation method based solely on genetic sites infor-
mation, achieved a genotype concordance rate above 0.99 and was
identified as the optimal imputation strategy in rabbits (Wang et al.,
2022). In recent years, lcWGS-based genotype imputation has been
increasingly applied to aquatic species, including large yellow croaker
(Larimichthys crocea), Russian sturgeon (Acipenser gueldenstaedtii), Pa-
cific oyster (Crassostrea gigas) and Scallops (Song et al., 2024; Wang
et al.,, 2025; Yang et al., 2024; Zhang et al., 2021). However, most
studies have focused exclusively on either reference panel-based or
reference-free approaches, and systematic comparisons between these
strategies remain in their infancy. Given the limited availability of
large-scale reference panels in aquaculture species, it is essential to
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investigate whether constructing reference panels from a small set of
high-coverage WGS (hcWGS) datasets can enhance imputation accuracy
compared to reference-free methods.

Spotted sea bass (Lateolabrax maculatus) is a promising candidate for
aquaculture in China due to its significant market demand and potential
for genetic improvement (Zhang et al., 2023). Considering the higher
cost of WGS and the absence of SNP arrays, genotype imputation using
IcWGS presents a cost-effective genotyping solution for large pop-
ulations of spotted sea bass. Therefore, establishing an efficient impu-
tation pipeline based on 1cWGS is essential for leveraging genomic
resources and facilitating selective breeding at minimal expense. In this
study, genotype imputation was performed using 1cWGS data
down-sampled from 1107 hcWGS data form four datasets, and their
sequencing depth, linkage disequilibrium and population structure were
captured. Initially, 100data was selected to conduct a preliminary
comparison of imputation accuracy across various pipelines. Subse-
quently, we thoroughly evaluated the impact of reference and target
data on GLIMPSE2 imputation, and the first reference panel of spotted
sea bass was constructed by combining all resequencing data and pub-
lishing with open access. Additionally, a systematic comparison was
then made between two specific imputation pipelines: one relying on a
haplotype reference panel and one not requiring reference panel.
Finally, the feasibility of genotype imputation in genomic selection was
assessed by comparing the accuracies of GP using hcWGS and imputed
1cWGS data. Our study provided the optimal imputation pipeline for
largescale 1cWGS data, demonstrating the potential of 1cWGS for
genomic selection in spotted sea bass. This work provides a valuable
reference for IcWGS-based studies in other aquaculture species.

2. Materials and methods
2.1. Sample collection and whole genome resequencing

In this study, a total of 1107 spotted sea bass samples with high-
coverage WGS data were collected. Specifically, 1007 samples were
sourced from three local fish farms in Dongying (DY), Tangshan (TS),
and Yantai (YT), China. This included 301 one-year-old fish from DY
population, collected from natural populations in the Yellow Sea and
Bohai Sea, 213 five-year-old broodstock from TS population, and 493
two-year-old fish from YT population, derived from northern and
southern cultivated populations. Growth traits, including total length
(TL) and body weight (BW), were measured for each individual, and
pectoral fin samples were stored in anhydrous ethanol for DNA extrac-
tion. Genomic DNA was extracted with TIANamp Genomic DNA Kit
(TIANGEN, Beijing, China). WGS libraries for 513 samples from DY and
TS populations were constructed and sequenced via BGISEQ-500 plat-
form to generate paired-end 100bp reads, following the protocols
described previously (Fang et al., 2018). For YT population, WGS li-
braries were prepared using NEBNext® UltraTM DNA Library Prep Kit
and sequenced on the DNBSEQ-T7 platform to generate paired-end
150 bp reads. Additionally, we downloaded 100 accessions, published
in recent genome resequencing studies (Chen et al., 2023), from the
National Center for Biotechnology Information (NCBI) Sequence Read
Archive (PRINA701455). These libraries were constructed using Ilu-
mina DNA preparation kits, and 150-bp paired-end reads were gener-
ated on the Illumina HiSeq 4000 platform. Therefore, four WGS datasets,
referred to as 100data, DY, TS and YT, were used in this study.

2.2. Variant calling and quality control

All raw sequence data were filtered by Fastp v0.20.0 (Chen et al.,
2018) and subsequently aligned to the L. maculatus reference genome
(JAYMHBO000000000) using the BWA-MEM algorithm in BWA v0.7.17
(Li and Durbin, 2010) with default parameters. The resulting Sequence
Alignment Map (SAM) files were converted into Binary Alignment Map
(BAM) files, which were then indexed and sorted using SAMtools v1.17
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(Li et al., 2009). Duplicate reads were identified and excluded by picard
v1.90 (http://broadinstitute.github.io/picard/). Finally, SNP calling
and joint genotyping were performed with GATK v4.1.8 (McKenna et al.,

(mRef/Ref + mRef/Alt + mAlt/Alt)

(xRef/Ref + xRef/Alt + xAlt/Alt + mRef /Ref + mRef/Alt + mAlt/Alt)

2010), followed by hard filtering with QD >2.0 || FS <60.0 || SOR
> 3.0 || RMS mapping quality >40.0 || MQRankSum >-12.5 || Read-
PosRankSum >-8.0. After variant calling, SNPs with a missing rate
above 5 %, minor allele frequency (MAF) below 5 %, and non-biallelic
SNPs were excluded using BCFtools v1.20 to obtain the final SNP
database.

2.3. Sequences depth, linkage disequilibrium (LD) and population
structure analysis

First, the sequencing depth of each sample was captured using
Mosdepth v0.2.5 (Pedersen and Quinlan, 2018) for subsequent
down-sampling process. The LD coefficient (r2) for each dataset was
calculated using the PopLDdecay v3.41 package with the parameters of
“-MaxDist 300 kb” (Zhang et al., 2019). To better understand the pop-
ulation structure of all samples, principal component analysis (PCA) was
performed using Plink v1.9 (Purcell et al., 2007). Additionally, the ge-
netic groups of each sample were further investigated using Admixture
v1.3.0 (Alexander et al., 2009), with the number of clusters (K) ranging
from 2 to 7. The K value with the smallest CV error was assumed to be
the optimal population stratification number, and individuals with g
values of genetic components greater than 50 % were assigned to their
corresponding population. Finally, genetic relatedness of population
was generated using GEMMA v0.98.1 (Zhou and Stephens, 2012) and
visualized with a heatmap using the hist function in R.

2.4. Evaluation of the accuracy of different genotype imputation pipelines

To preliminary access the accuracy of different genotype imputation
pipelines, we selected the 100data as test dataset for three categories of
imputation pipelines: (1) STITCH (v1.6.6) imputation for BAM files,
based solely on SNP site information without a reference panel (Davies
etal., 2016), (2) GLIMPSE2 (v2.0.0) imputation for BAM files relying on
a reference panel (Rubinacci et al., 2023), and (3) BEAGLE (v4.1)
imputation for VCF files using a reference panel (Browning et al., 2018).
First, all 1007 samples of DY, TS and YT datasets were included to
construct a reference panel using SHAPEIT5 following default parame-
ters (Hofmeister et al., 2023). Then, to investigate the impact of
sequencing depth on genotype imputation accuracy, we randomly
down-sampled paired-reads from the BAM files (average coverage is
15.9 x) of 100 samples to 1cWGS data with depths of 1 x, 3 x and
5 x using DownsampleSam in Picard tools. STITCH and GLIMPSE2
accepted down-sampled BAM files as input, while BEAGLE requires VCF
files. SNP calling and quality control for the down-sampled BAM files
followed the same procedures described in Section 2.2 “Variant Calling
and Quality Control”. Additionally, the pilot study evaluated the impact
of the K value (number of ancestral haplotypes) on imputation accuracy,
finding that a K value of 25 is optimal for STITCH imputation in this
study, while GLIMPSE2 and BEAGLE were used with default parameters.
Considering imputation efficiency and the robustness of imputation
performance across chromosomes, three chromosomes (chr1, chr8, and
chr24) of 1cWGS data were chosen for the comparison of imputation
accuracy. Two metrics were introduced to evaluate the imputation ac-
curacy, including genotype concordance (GC) and the squared Pearson
correlation coefficient of genotype dosage (R?) between the imputed
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1cWGS data and corresponding hcWGS data (Browning et al., 2018). The
calculation formulas for GC are defined as follows:

where m means number of matches between imputed and observed
genotype, X means number of mismatches between imputed and observe
genotype.

The calculation formulas for R? are defined as follows:

2

( S (Ig-lg)(hg — g ))
Rg _ {i=1}

> (Ig—Ig)** 3 (hg —hg)*
(i=1) (i=1)

where genotypes were coded as 0, 1, or 2, representing the number of
the minor allele; lg; is the imputed genotype for individual i in IcWGS
data, and Ig denotes mean imputed genotype value across all individuals;

hg; and hg were the observed true genotypes and mean value of the
observed genotypes calling by hcWGS data, and n is the number of all
individuals used for genotype imputation.

2.5. Effect of reference and target data on imputation accuracy

To investigate the impact of reference data on GLIMPSE2 imputa-
tion, the YT dataset, characterized by heterogeneous population struc-
ture, was selected as test data for genotype imputation using three
different reference panel construction strategies varying in population
genetic diversity and sample size. In detail, SHAPEIT5 was used to
construct following reference panel: (1) The reference panel called
"DY+TS" was constructed by integrating 613 samples from 100data, DY
and TS datasets. (2) The reference panel called "YT" was constructed
from YT samples only. To avoid overestimation of imputation accuracy
caused by overlap between the imputation samples and the reference
panel construction samples, we employed a five-fold cross-validation
approach. In this approach, 80 % of the samples from each population,
selected based on the optimal YT population stratification, were used to
construct the reference panel, while the remaining 20 % were desig-
nated as the imputation dataset. This approach ensured genetic diversity
in the reference panel and minimized the risk of accuracy over-
estimation. This procedure was repeated five times until all YT samples
were imputed. (3) The comprehensive "ALL" reference panel, combining
the previous two strategies, was formulated through 613 samples from
100data, DY and TS datasets, together with 80 % of the YT samples
(394). The remaining 20 % of YT samples served as the target data for
imputation. The five-fold cross-validation procedure was repeated until
all YT samples were imputed. Additionally, to investigate the impact of
target data on GLIMPSE2 imputation, imputation accuracy was
compared across DY, TS, and YT datasets, which vary in population
structure, genetic relatedness, LD level and sample size, using the
optimal reference panel. All BAM sequence files of DY, TS and YT
datasets were randomly down-sampled to varying 1cWGS levels of
0.5x, 1x, 2x, 3x, and 5 x using Picard. Three chromosomes
(chrl, chr8, and chr24) of 1cWGS data were selected for GLIMPSE2
imputation and imputation accuracy was assessed by calculating the GC
and R? between the imputed and true genotypes.
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2.6. Comparison of imputation accuracy between GLIMPSE2 and
STITCH

Given the critical impact of sample size on the accuracy of STITCH
imputation, which is highly sensitive to imputation samples to estimate
ancestral haplotype for inferring missing genotypes. For example,
STITCH imputation accuracy for Pacific oyster exhibited an increasing
trend with the increase of sample size, and the accuracy tended to sta-
bilize after the sample size reached 300 (Davies et al., 2016; Yang et al.,
2024). Therefore, the lower accuracy of STITCH relative to GLIMPSE2
observed in the 100 test samples aligns with methodological expecta-
tions. This result shouldn’t be interpreted as definitive evidence of
GLIMPSEZ2’s superiority, and we couldn’t determine GLIMPSE2 as an
optimal approach rather than STITCH. To address this critical de-
pendency and determine the optimal genotype imputation pipeline for
an adequate sample size, we systematically compared the imputation
accuracy of GLIMPSE2 and STITCH for DY, TS and YT datasets. BAM
files were down-sampled to 1cWGS levels of 0.5 x ,1 x ,2 x , 3 x , and
5 x using Picard. For GLIMPSE2 imputation, the optimal reference
panel was constructed following the third strategy described above. To
accurately estimate ancestral haplotypes for STITCH imputation without
a reference panel, all 1007 samples were included in the process. Three
chromosomes (chrl, chr8, and chr24) from IcWGS data were selected for
genotype imputation, and the GC and R? values between the imputed
and true genotypes were compared for both GLIMPSE2 and STITCH.

2.7. Application of imputed IcWGS data in genomic prediction for growth
traits

Owing to the high heterozygosity and extensive SNP density within
the Lateolabrax maculatus genome, the utility of imputed SNP markers
for selective breeding programs, particularly concerning polygenic
traits, requires further validation. Therefore, we conducted genomic
prediction (GP) using imputed 1cWGS data for TL trait for DY and TS
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datasets, and BW trait for YT datasets. Based on the imputation perfor-
mance in the three datasets, imputed 3 x IcWGS data generated by
GLIMPSE2, combined with an optimal reference panel, were selected for
subsequent genomic prediction, and the results were compared with
those obtained using hcWGS data. Genomic predictions were carried out
using a 10-fold cross-validation approach with five replicates. Specif-
ically, 10 % of the samples were randomly selected as the validation set,
while the remaining 90 % served as the training set for GWAS analysis
using GEMMA v0.98.1 (Zhou and Stephens, 2012). Different numbers of
SNPs with the smallest genome-wide p values from GWAS were chosen
to model the genotype and true phenotype data in the training set, which
was then used to predict the phenotypes in the validation set. Predictive
accuracy was calculated as the Pearson correlation coefficient between
the true and predicted phenotypes. Support Vector Machine (SVM), a
powerful machine-learning algorithm from the kernel-based family, was
employed for genomic prediction due to its outstanding predictive
performance in complex trait analysis (Wang et al., 2022).

3. Results
3.1. SNP identification and statistics

After high-throughput sequencing and filtering, 3.91, 19.05, 13.50
and 21.94 billion pairs of clean reads were generated for 100data, DY,
TS and YT datasets, respectively, with average sequencing depths of
15.93 x, 10.00 x , 10.04 x and 10.48 x (Fig. 1 A). Following variant
calling and quality control, a total of 5244,698 SNPs were identified as
common across all datasets, which were subsequently used as imputa-
tion markers in this study. These SNPs spanned a total physical distance
of 622.44 Mb, with an average density of SNP/118 bp, indicating a
dense and uniform distribution throughout the genome. Among the 24
chromosomes, chromosome 22 harbored the highest SNP marker den-
sity of SNP/105 bp, while chromosome 6 possessed the lowest SNP
marker density of SNP/137 bp (Fig. S1, Table S1).
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Fig. 1. (A) Box plot showing the sequencing depth for the four datasets. (B) LD decay plot of SNPs for the four datasets. (C) PCA plot of all individuals from the four
datasets based on PC1 and PC2. (D) Bar plot showing the genetic components of the four datasets based on Admixture analysis. The numbers represent the cor-

responding populations.
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3.2. LD and population structure analysis

The analysis of linkage disequilibrium (LD) revealed a rapid decline
in the squared correlation coefficient (r?) between loci as the distance
between SNP pairs increased. At a distance of 250 bp, the r? values were
0.0932, 0.0768, 0.0826 and 0.1045 for 100data, DY, TS and YT datasets,
respectively (Fig. 1B). Among these, YT dataset exhibited a relatively
higher level of LD. The PCA results suggested that the YT dataset
comprised complex genetic groups, while individuals from the other
three datasets were more genetically homogeneous and clustered closely
with a subset of YT individuals (Fig. 1 C). Admixture analysis identified
the optimal population stratification number as 5 for all individuals
(Fig. S2). Based on q values of the genetic components, 1, 1, 2, and 4
populations were assigned to the 100data, DY, TS, and YT datasets,
respectively, further highlighting the higher genetic diversity in the YT
dataset (Fig. 1D). Additionally, analysis of genetic relatedness revealed
no detectable relatedness within the DY dataset, while weak genetic
relatedness was observed in the TS dataset. Notably, significantly
stronger genetic relatedness was identified within the YT dataset
(Fig. S3).

3.3. Computational efficiency comparison of genotype imputation
pipelines

To assess computational efficiency of different genotype imputation
pipelines, we performed chromosome 1 (267,335 SNPs) imputation
(Table S1) benchmarking at 3 x sequencing depth using Intel H3C
R4900 G5 clusters with 60-thread parallelization, while constraining
GATK to its default 4-thread implementation. The actual CPU hours
consumed for different pipelines revealed significant disparities
(Table S2). The BEAGLE pipeline consumed 79.0 CPU-hours, comprising
47.2 CPU-hours for GATK variant calling (11.8 h x 4 threads) and 31.8
CPU-hours for imputation (0.53 h x 60 threads). STITCH required 252.0
CPU-hours (4.2h x 60 threads) despite direct BAM imputation. In
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Fig. 2. The comparison of genotype imputation accuracy bewteen different
imputation methods and sequencing depths for 100data dataset. (A) Estimated
genotype concordance (GC) between imputed genotypes and true genotypes.
(B) Estimated squared Pearson correlation coefficient (R?) for genotype dosage
between imputed and true genotypes.

Aquaculture Reports 45 (2025) 103088

contrast, GLIMPSE2 achieved optimal efficiency at 10.8 CPU-hours
(0.18 h x 60 threads) through direct BAM imputation. This represents
an 86.3 % reduction for GLIMPSE2 versus BEAGLE and a 95.7 %
reduction versus STITCH, establishing GLIMPSE2 as the most compu-
tationally efficient pipeline.

3.4. Accuracy evaluation of different genotype imputation pipelines for
100data dataset

To preliminary determine the optimal genotype imputation pipeline,
100data dataset, characterized by a simple population structure
(Fig. 1 Cand D), was selected as test data for three imputation pipelines.
One sample with a low sequencing depth (8.48 x) was excluded due to
deviation from the average (Fig. 1 A), and the imputation accuracy of
three methods across various sequencing depths was assessed using GC
and R® metrics (Fig. 2). Our results revealed significant differences
(P < 0.0001) in accuracy among the three methods at various
sequencing depths, although imputation accuracy generally improved
with increasing sequencing depth (Fig. 2). Of which, GLIMPSE2
demonstrated the highest imputation accuracy, BEAGLE the lowest, and
STITCH exhibited intermediate imputation accuracy. Notably, as
sequencing depth increased, the accuracy gap between STITCH and
GLIMPSE2 gradually narrowed. For example, at a sequencing depth of
5 x , GC values for STITCH, GLIMPSE2, and BEAGLE were 0.889, 0.919
and 0.727 (Fig. 2A, Table S3), respectively, and the corresponding R?
values were 0.923, 0.935 and 0.806 (Fig. 2B, Table S3). Therefore,
GLIMPSE2 was deemed a superior reference panel-based imputation
method compared to BEAGLE. However, due to the relatively small
sample size used for STITCH imputation, its performance warrants
further evaluation.

3.5. Effect of reference and target data on GLIMPSE2 imputation
accuracy

To further refine the optimal imputation pipeline, the effect of
reference data on GLIMPSE2 imputation accuracy was evaluated for YT
datasets. At a relatively high sequencing depth of 5 x , imputation ac-
curacy across the three reference panels was comparable, with GC
values of 0.935, 0.929 and 0.911, and R? values of 0.946, 0.942 and
0.926 for ALL, YT and “DY~+TS” reference panels, respectively (Fig. 3,
Table S4). However, as sequencing depth decreased, particularly at
0.5 x and 1 x , the imputation accuracy of “DY+TS” reference panel
dropped significantly compared to the YT and ALL panels. At 0.5 x , the
GC and R? values of “DY+TS” reference panel were 0.639 and 0.677,
respectively (Fig. 3A and B, Table S4). These results indicate that when
the reference panel lacks individuals of target population, the imputa-
tion accuracy is considerably reduced. When a subset of YT individuals
was selected to construct reference panel (YT), the imputation accuracy
significantly improved, with GC and R? values of 0.830 and 0.854,
respectively, at 0.5 x (Fig. 3A and B, Table S4). Moreover, increasing
population size within the reference panel (ALL) only slightly enhanced
the imputation accuracy, with GC and R? values of 0.862 and 0.884,
respectively, at 0.5 x (Fig. 3A and B, Table S4). Based on the optimal
reference panel construction strategy (ALL), the imputation accuracies
for DY and TS datasets were significantly lower than those of YT datasets
at lower sequencing depths, especially at 0.5 x , the GC values were
0.601, 0.771 and 0.862 for DY, TS and YT datasets, respectively, with
corresponding R? values of 0.645, 0.805 and 0.884 (Fig. 3C and D,
Table S5).

3.6. Comparison of imputation accuracy between GLIMPSE2 and
STITCH for three datasets

To compare the imputation accuracy between GLIMPSE2 and
STITCH for adequate sample size, we conducted genotype imputation
for all 1007 samples including three datasets. As shown in Fig. 4, the
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across different sequencing depths for DY, TS and YT datasets. GLIMPSE2
imputation was performed using the optimal reference panel construction
strategy, and STITCH imputation included all 1007 samples.

imputation accuracy of both GLIMPSE2 and STITCH generally improved
with increasing sequencing depth. At depthsof 2 x , 3 x and 5 x , there
was no significant difference between two methods in terms of GC and
R? values for three datasets, except for higher GC values with GLIMPSE2
in the TS dataset at 2 x depth. However, at lower sequencing depths of
0.5 x and 1 x , GLIMPSE2 generally exhibited superior imputation ac-
curacy compared to STITCH, particularly for TS and YT datasets (Fig. 4,
Table S6). Notably, for DY dataset, which has a simple population
structure, imputation accuracy including GC and R? remained consis-
tently lower (< 0.8) at 0.5 x and 1 x depths for both GLIMPSE2 and
STITCH (Fig. 4, Table S6).
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Fig. 5. The comparison of predictive accuracies for growth traits using IcWGS
(3 x) and hcWGS (10 x) data for (A) DY, (B) TS and (C) YT datasets. The SVM
model was used for genomic prediction.
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3.7. Genomic prediction using IlWGS data after GLIMPSE2 imputation

Given that imputation accuracy at 3 x depth achieved relatively
high levels (GC > 0.85 and R? > 0.87) across all three datasets (Fig. 4,
Table S6), we selected the 3 x 1cWGS data after GLIMPSE2 imputation,
along with hcWGS data, to perform genomic prediction and further
evaluate its application potential. For DY dataset (Fig. 5A), lcWGS and
hcWGS data alternated in predictive accuracy across marker numbers
ranging from 50 to 3000. Notably, the predictive accuracy of hcWGS
data reached plateau (0.221) at 3000 SNPs, whereas at least 10,000
SNPs were required to achieve predictive accuracy above 0.2 (Table S7).
For TS dataset (Fig. 5B), both 1cWGS and hcWGS data exhibited a similar
predictive trend. Predictive accuracy increased gradually with the
number of markers, reaching the predictive plateau (0.389 and 0.376) at
3000 and 5000 SNPs for hcWGS and 1cWGS data, respectively, and
decreased slightly with further increases in marker number (Table S7).
For YT dataset (Fig. 5C), despite fluctuations in predictive accuracy,
both 1cWGS and hcWGS data generally followed an upward trend fol-
lowed by a decline. The predictive peak was 0.397 for lcWGS data at 500
SNPs and 0.394 for hcWGS data at 1000 SNPs (Table S7). Overall, as the
number of SNPs increased, there was no significant discrepancy in
predictive accuracy between IcWGS and hcWGS data. The required SNP
number largely depended on imputation accuracy, with 5000, 100, and
100 SNPs needed for DY, TS and YT datasets, respectively (Fig. 5,
Table S7).

4. Discussion

The rapid advancement of sequencing and biostatistics technologies
has facilitated the widespread use of genomic resources to dissect ge-
netic mechanisms and enhance genetic gains for economically important
traits in aquaculture species (Houston et al., 2020; Yanez et al., 2020).
However, the high cost of genotyping remains a barrier, limiting the
number of sequenced individuals and hindering the full utilization of
genomic resources. The development of low-cost genotyping strategies
and genotype imputation offers a promising solution to address cost
challenges and increase the number of genotyped individuals (Zhang
et al., 2023). Among these, IcWGS stands out for its extensive coverage
of genetic variation across the genome and cost-effectiveness (Davies
et al., 2021; Lou et al., 2021) and has been successfully applied in ge-
notype imputation research in human (Gilly et al., 2016), cattle (Zhang
et al., 2023) and large yellow croaker (Zhang et al., 2021). Therefore,
the development of an appropriate and efficient imputation pipeline
leveraging 1cWGS data is essential for spotted sea bass that demand
urgent genetic improvement (Zhang et al., 2023).

In this study, we evaluated three widely used imputation software -
STITCH, GLIMPSE2, and BEAGLE - to determine the optimal imputation
pipeline. These tools employ diverse imputation strategies, varying
dependence on reference panels and their use of BAM or VCF files for
imputation. To minimize computational redundancy and enhance
imputation efficiency, the 100data dataset, characterized by a small
sample size, high sequencing depth (15.93 x), and simple genetic
structure (Fig. 1 C and D), was selected as the most suitable dataset for
the preliminary screening of imputation pipelines. Of which, GLIMPSE2
and BEAGLE, both reliant on same reference panel, demonstrated the
highest and lowest imputation accuracy across varying sequencing
depths, respectively (Fig. 2). The relatively poor performance of
BEAGLE than GLIMPSE2 or STITCH has also been observed in previous
imputation studies involving both aquaculture and livestock species
(Teng et al., 2022; Wang et al., 2025; Yang et al., 2024; Yang et al.,
2021), suggesting that BEAGLE imputation is unable to accurately es-
timate missing genotypes despite having a high quality reference panel.
Furthermore, we quantified computational efficiency through genotype
imputation benchmarking for chrl at 3 x sequencing depth. Tests were
conducted on Intel H3C R4900 G5 clusters with 60-thread paralleliza-
tion, measuring actual CPU-hour consumption. The BEAGLE pipeline
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necessitates intermediate VCF generation via GATK variant calling,
which is constrained by a default 4-thread implementation (McKenna
et al., 2010). This architectural limitation resulted in high resource de-
mands totaling 79.0 CPU-hours, -comprising 47.2 CPU-hours for GATK
(11.8 h x 4 threads) and 31.8 CPU-hoursfor BEAGLE (0.53h x 60
threads). In contrast, GLIMPSE2’s direct BAM processing achieved su-
perior efficiency at 10.8 CPU-hours (0.18 h x 60 threads), representing
an 86.3 % reduction relative to BEAGLE. Therefore, this combination of
computational efficiency and accuracy establishes GLIMPSE2 as the
optimal imputation approach for spotted sea bass when reference panels
are available.

The quality of the reference panel critically influences imputation
accuracy (Charon et al., 2021; Li et al., 2023), with population genetic
diversity and sample size serving as key determinants in panel con-
struction (Fernandes Garcia et al., 2022). To systematically evaluate
these factors for GLIMPSE2 imputation, we selected the YT dataset,
characterized by diverse population structures (Fig. 1 C and D), ensuring
population diversity alignment between reference and target data.
Notably, for GLIMPSE2 imputation with “DY+TS” reference panel, the
sample size of target and reference data was 493 and 514, respectively.
While for imputation using YT panel, we employed a five-fold cross--
validation approach with five imputations, with each imputation
involving a target sample size of 99 and a reference size of 394, both
significantly smaller than those of the “DY+TS” panel. Crucially, at
lower sequencing depths (0.5 x, 1 x and 2 x), the YT panel demon-
strated significantly higher accuracy than the larger “DY+TS” panel
(Fig. 3A and B, Table S4), despite the latter having a larger reference
panel. This superior imputation performance of YT panel is mainly due
to its diverse population structure congruence with target data. These
results indicate that optimizing reference panels for population genetic
diversity rather than sheer sample size maximizes imputation accuracy,
aligning with previous genotype imputation studies in cattle and tilapia
(Fernandes Garcia et al., 2022; Zhang et al., 2023). This principle is
reinforced by diminishing returns in accuracy gains: the ALL panel
showed only marginal improvements over YT panel (3.9 % for GC and
3.3 % for R at 0.5 x) (Fig. 3A and 3B, Table S4), confirming that panel
size is not the primary accuracy determinant when population genetic
diversity is matched (Yang et al., 2024; Zhao et al., 2021). Nevertheless,
maximizing the size of reference panels remains crucial to achieve the
highest possible accuracy, especially when sequenced animals exhibit
limited genetic diversity. It is also noteworthy that, despite employing
an identical construction strategy of reference panel (ALL), the impu-
tation accuracies for DY and TS datasets remain significantly lower than
those of YT datasets at lower sequencing depths (Fig. 3C and D,
Table S5). This superior imputation performance of YT datasets mainly
stems from a relatively higher level of LD and genetic relatedness, and
diverse population structure. Furthermore, although the DY dataset had
alarger sample size than TS dataset, its imputation accuracy was notably
lower than that due to the lower LD, weaker genetic relatedness, and
simple population structure (Fig. 1B and D, Fig. S3). These results about
the impact of reference and target data on imputation accuracy collec-
tively emphasize that population structure, genetic relatedness and LD
level between the haplotype reference data and the IcWGS data to be
imputed are important factors affecting imputation performance.
Therefore, when performing genotype imputation using 1lcWGS data,
prioritizing these factors in both the reference and target data is essen-
tial, and increasing the sample size as much as possible will further
enhance accuracy.

STITCH, a leading imputation software that operates without a
reference panel, has effectively addressed the challenge of accurate
genotype imputation in many non-model species that lack high-quality
genotype reference panels (Davies et al., 2016). Its outstanding perfor-
mance has been demonstrated in humans, mice, pigs, and cattle (Davies
et al., 2016; Nicod et al., 2016; Teng et al., 2022; Yang et al., 2021). For
aquatic species, lcWGS data imputed using STITCH achieved predictive
accuracy comparable to WGS genotype data in both real and simulated
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datasets in large yellow croaker, highlighting its potential in genomic
selection (Zhang et al., 2021). Similarly, STITCH combined with 1cWGS
has proven to be a high-throughput and cost-effective genotyping
method in Pacific oyster (Yang et al., 2024). In our study, we first
evaluated the impact of founders or ancestral haplotypes (K) on STITCH
imputation accuracy using the 100data dataset. While the highest
imputation accuracy was observed at K = 30 (Fig. S4), this required
longer computation times. Therefore, K = 25 was selected as the optimal
parameter for further imputation. Although the imputation performance
of STITCH was slightly lower than that of GLIMPSE2 for 100data data-
set, this result aligns with expectations, as STITCH relies solely on
sequencing reads in BAM format to estimate optimal ancestral haplo-
types. Clearly, the 100data dataset was insufficient to generate effective
haplotype information for accurate imputation. A similar pattern was
seen in Pacific oyster imputation, where accuracy stabilized after the
sample size reached 300 at sequencing depths of 1 x and 2 x (Yang
et al., 2024). To maximize STITCH’s performance, 1007 samples were
included for imputation process, and the results were compared with
GLIMPSE2 using ALL panel across three datasets. Despite this,
GLIMPSE2 consistently outperformed STITCH in three datasets (Fig. 4).
Consequently, GLIMPSE2 using ALL panel was identified as the optimal
imputation pipeline for spotted sea bass up to now. Notably, both
STITCH and GLIMPSE2 exhibited lower imputation accuracy for DY and
TS datasets compared to YT dataset (Fig. 4), reinforcing the idea that the
genetic diversity of reference and target data is a crucial factor affecting
imputation accuracy, regardless of whether a reference panel is used.

Genomic selection has proven to be an effective method for accel-
erating breeding progress and reducing the costs associated with
breeding programs (Georges et al., 2019). The application potential of
GS based on hcWGS data for growth traits has been demonstrated in our
previous study (Zhang et al., 2024). To further reduce genotyping cost in
genomic selection for spotted sea bass, the impact of IcWGS data on
genomic prediction was investigated in this study. Genomic predictive
performance of 1cWGS data showed a high correlation to their imputa-
tion accuracy within three datasets. A significant difference in predictive
accuracy between hcWGS and 1cWGS data was observed only in DY
dataset, with a relatively lower R? value (0.873). However, the com-
parable predictive accuracy between hcWGS and 1cWGS data was
observed once the number of markers exceeded 5000 (Fig. 5, Table S7).
Furthermore, DY dataset has previously shown poor predictive perfor-
mance in GP using SNP and InDel markers, likely due to its simple ge-
netic structure and low genetic relatedness (Zhang et al., 2023; Zhang
et al., 2024), indicating that it may not be suitable for GS. Our study
primarily focused on assessing the potential of 1cWGS data in GP,
although investigating factors affecting predictive accuracy warrants
further exploration. The predictive accuracy between imputed 1cWGS
data and WGS genotype data was remarkably consistent for TS and YT
datasets when marker numbers exceeded 50, with R? values of 0.909
and 0.935, respectively (Fig. 5B and C, Table S6). Although slightly
lower accuracy was observed for IcWGS compared to hcWGS at 50
markers for two datasets, both datasets could reach the predictive
plateau with a similar number of markers (Fig. 5B and C, Table S7). This
suggests that 1cWGS, combined with genotype imputation, can effec-
tively capture genetic variation and achieve comparable prediction
performance to hcWGS data (Song et al., 2024; Zhang et al., 2021; Zhang
et al., 2022). However, due to the relatively low genetic relatedness
observed in the three datasets (Fig. S3), there remains considerable
potential for improving imputation accuracy, particularly at lower
sequencing depths. Future efforts will focus on expanding both the
reference and target data with additional family representatives to
further optimize the genotype imputation pipeline.

5. Conclusion

This study systematically evaluated different genotype imputation
pipelines, differing in their reliance on reference panels and the use of
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BAM or VCF files. Due to lower accuracy and excessive computational
demands, BEAGLE was not considered for further analyses. We also
explored the effects of reference and target data on GLIMPSE2 imputa-
tion, finding that population genetic diversity outweighed sample size in
constructing reference panels. And population structure, genetic relat-
edness and LD level between reference and target data are important
factors affecting imputation accuracy. In addition, we developed the
first publicly available reference panel, comprising 1107 spotted sea
bass samples. The imputation accuracy of STITCH and GLIMPSE2 for
adequate sample size were compared for three datasets, and GLIMPSE2
imputation using ALL panel emerged as the most effective imputation
pipeline for spotted sea bass. Finally, we demonstrated that lcWGS data
combined with GLIMPSE2 imputation provides genomic prediction re-
sults comparable to those obtained with hcWGS data. These insights
contribute to advancing large-scale genotyping efforts for spotted sea
bass and can serve as a reference for genotype imputation in other
aquaculture species.
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