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A B S T R A C T

Genotype imputation following low-coverage whole genome sequencing (lcWGS) data offers a cost-effective 
approach for genotyping large populations, with significant potential to accelerate genomic selection in 
breeding programs. For spotted sea bass (Lateolabrax maculatus), genetic improvement is urgently required due to 
the degeneration of genetic traits and long generation intervals. However, the high costs associated with high- 
coverage WGS (hcWGS) for large populations have delayed breeding progress. To address this gap, the pre
sent study conducted a comprehensive evaluation of genotype imputation for lcWGS data down-sampled from 
1107 individuals across four hcWGS datasets and aimed to develop an efficient imputation pipeline utilizing 
lcWGS data for spotted sea bass. Initially, 100data dataset was selected to preliminary assess the performance of 
various imputation pipelines. BEAGLE was excluded due to its lower accuracy and redundant computational 
requirements, while STITCH and GLIMPSE2 were retained for subsequent analyses. The effects of reference and 
target data on GLIMPSE2 imputation were then evaluated, identifying the optimal strategy for constructing the 
reference panel prioritizes population genetic diversity over sample size to maximizes imputation accuracy. It 
also highlighted the critical role of population structure, genetic relatedness and linkage disequilibrium (LD) 
level between reference and target data for imputation accuracy. Additionally, the imputation accuracy of 
STITCH and GLIMPSE2 was compared across three datasets, with GLIMPSE2 imputation using the optimal 
reference panel emerging as the most effective imputation pipeline for spotted sea bass. Finally, we demonstrated 
that lcWGS data combined with GLIMPSE2 imputation achieves predictive accuracy comparable to hcWGS data 
in genomic prediction. Our study presents an optimized workflow to impute lcWGS data in spotted sea bass and 
establishes the first publicly available reference panel with the highest known genetic diversity. This resource 
lays a crucial foundation for future genomic selection and breeding programs and serves as a valuable reference 
for genotype imputation in other aquaculture species.

1. Introduction

The rapid advancement of high-throughput genome sequencing 
technologies has spurred the development and application of diverse 
genotyping methods, including whole genome resequencing (WGS), 
single nucleotide polymorphism (SNP) arrays, and reduced representa
tion sequencing (RRS), for population-level genetic variation studies 
(Peng et al., 2016; Zhang et al., 2023; Zhou et al., 2019). These methods 
have become fundamental tools in revealing the genetic architecture of 

complex traits through genome-wide association studies (GWAS) and 
accelerating genetic breeding programs via genomic selection (GS) 
(Georges et al., 2019; Gong et al., 2021; Visscher et al., 2017). While 
low- and medium-density SNP panels from arrays or RRS are 
cost-effective, WGS provides superior GWAS resolution and accuracy in 
identifying candidate loci due to its ultra-dense SNP coverage 
(Fernandes Garcia et al., 2022; Höglund et al., 2019). Similarly, accurate 
genomic prediction (GP) requires high-density SNP data across large 
cohorts (Iheshiulor et al., 2016; Tsai et al., 2017). However, the 
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prohibitive cost of high-coverage WGS genotyping for large populations 
remains a major barrier, limiting its widespread application in GWAS 
and GS for aquaculture breeding programs. Consequently, developing 
cost-effective strategies to obtain high-density genotype data has 
become an urgent priority.

To bridge this gap, low-cost genotyping strategies coupled with ge
notype imputation have thus emerged as a cost-effective solution to 
obtain high-density genotype data across large populations at minimal 
expense (Huang et al., 2012; Tsai et al., 2017). Genotype imputation 
typically involves two key steps: (1) constructing haplotype reference 
panels (HRPs) using high-density genotyping data from represented 
individuals, and (2) inferring and imputing missing genotypes or 
ungenotyped markers in low-density SNP panels (Browning and 
Browning, 2009); (Davies et al., 2016); (Zhang et al., 2022). These ap
proaches maximize the utility of genomic data by imputing low-density 
SNP panels to high-density SNP data, even up to WGS level, and have 
been successfully applied in several breeding programs for economically 
important livestock and crop species (Fernandes Júnior et al., 2021; 
Hayes et al., 2012; Hickey et al., 2012). Despite their success, several 
challenges in these imputation approaches remain unresolved. For 
example, common SNP arrays are more prone to bias in capturing ge
netic variation and are limited in detecting novel variants compared to 
WGS, thereby constraining imputation accuracy (Lachance and Tishkoff, 
2013; Zhang et al., 2023). Additionally, high-quality HRPs for compre
hensive genome-wide imputation are often unavailable for non-human 
species, necessitating the construction of HRPs from high-coverage 
WGS data of the same or closely related populations, which can be 
leveraged to significantly improve imputation accuracy (Hayward et al., 
2019; Ji et al., 2019; Sargolzaei et al., 2014). Therefore, array-based 
genotype imputation in aquaculture species has primarily focused on 
Atlantic salmon (Salmo salar) and Nile tilapia (Oreochromis niloticus), 
both globally significant breeding species with high-quality commercial 
SNP arrays and well-established breeding programs (Fernandes Garcia 
et al., 2022; Tsai et al., 2017; Tsairidou et al., 2020; Yoshida and Yáñez, 
2021). The lack of SNP arrays and established pedigree populations for 
most aquaculture species continues to hinder the widespread applica
tion of array-based genotype imputation in breeding programs (Zhang 
et al., 2021).

Given these challenges, low-coverage whole genome sequencing 
(lcWGS) has emerged as a promising, low-cost alternative for the 
imputation of complete genotypes (Pasaniuc et al., 2012). Compared 
with SNP array and RRS strategy, lcWGS maximizes coverage breadth at 
the expense of sequencing depth, capturing more comprehensive genetic 
variation of whole genome, including population-specific variants (Lou 
et al., 2021). The use of lcWGS provides greater power for GWAS in 
detecting associated signals compared to SNP arrays (Alicia et al., 2021; 
Arthur et al., 2019; Gilly et al., 2016). Moreover, genotype data gener
ated by lcWGS can be further imputed to WGS level using genotype 
imputation strategies, which mainly including two categories: those 
relying on genotype reference panels and reference-free approaches 
(Zhang et al., 2021; Zhang et al., 2022). For instance, using a 
high-quality reference panel phased by Beagle v5.4, lcWGS data 
imputed with GLIMPSE2 achieved an average concordance rate greater 
than 0.99 in cattle (Zhang et al., 2023). Similarly, STITCH imputation, a 
reference-free imputation method based solely on genetic sites infor
mation, achieved a genotype concordance rate above 0.99 and was 
identified as the optimal imputation strategy in rabbits (Wang et al., 
2022). In recent years, lcWGS-based genotype imputation has been 
increasingly applied to aquatic species, including large yellow croaker 
(Larimichthys crocea), Russian sturgeon (Acipenser gueldenstaedtii), Pa
cific oyster (Crassostrea gigas) and Scallops (Song et al., 2024; Wang 
et al., 2025; Yang et al., 2024; Zhang et al., 2021). However, most 
studies have focused exclusively on either reference panel-based or 
reference-free approaches, and systematic comparisons between these 
strategies remain in their infancy. Given the limited availability of 
large-scale reference panels in aquaculture species, it is essential to 

investigate whether constructing reference panels from a small set of 
high-coverage WGS (hcWGS) datasets can enhance imputation accuracy 
compared to reference-free methods.

Spotted sea bass (Lateolabrax maculatus) is a promising candidate for 
aquaculture in China due to its significant market demand and potential 
for genetic improvement (Zhang et al., 2023). Considering the higher 
cost of WGS and the absence of SNP arrays, genotype imputation using 
lcWGS presents a cost-effective genotyping solution for large pop
ulations of spotted sea bass. Therefore, establishing an efficient impu
tation pipeline based on lcWGS is essential for leveraging genomic 
resources and facilitating selective breeding at minimal expense. In this 
study, genotype imputation was performed using lcWGS data 
down-sampled from 1107 hcWGS data form four datasets, and their 
sequencing depth, linkage disequilibrium and population structure were 
captured. Initially, 100data was selected to conduct a preliminary 
comparison of imputation accuracy across various pipelines. Subse
quently, we thoroughly evaluated the impact of reference and target 
data on GLIMPSE2 imputation, and the first reference panel of spotted 
sea bass was constructed by combining all resequencing data and pub
lishing with open access. Additionally, a systematic comparison was 
then made between two specific imputation pipelines: one relying on a 
haplotype reference panel and one not requiring reference panel. 
Finally, the feasibility of genotype imputation in genomic selection was 
assessed by comparing the accuracies of GP using hcWGS and imputed 
lcWGS data. Our study provided the optimal imputation pipeline for 
largescale lcWGS data, demonstrating the potential of lcWGS for 
genomic selection in spotted sea bass. This work provides a valuable 
reference for lcWGS-based studies in other aquaculture species.

2. Materials and methods

2.1. Sample collection and whole genome resequencing

In this study, a total of 1107 spotted sea bass samples with high- 
coverage WGS data were collected. Specifically, 1007 samples were 
sourced from three local fish farms in Dongying (DY), Tangshan (TS), 
and Yantai (YT), China. This included 301 one-year-old fish from DY 
population, collected from natural populations in the Yellow Sea and 
Bohai Sea, 213 five-year-old broodstock from TS population, and 493 
two-year-old fish from YT population, derived from northern and 
southern cultivated populations. Growth traits, including total length 
(TL) and body weight (BW), were measured for each individual, and 
pectoral fin samples were stored in anhydrous ethanol for DNA extrac
tion. Genomic DNA was extracted with TIANamp Genomic DNA Kit 
(TIANGEN, Beijing, China). WGS libraries for 513 samples from DY and 
TS populations were constructed and sequenced via BGISEQ-500 plat
form to generate paired-end 100 bp reads, following the protocols 
described previously (Fang et al., 2018). For YT population, WGS li
braries were prepared using NEBNext® UltraTM DNA Library Prep Kit 
and sequenced on the DNBSEQ-T7 platform to generate paired-end 
150 bp reads. Additionally, we downloaded 100 accessions, published 
in recent genome resequencing studies (Chen et al., 2023), from the 
National Center for Biotechnology Information (NCBI) Sequence Read 
Archive (PRJNA701455). These libraries were constructed using Illu
mina DNA preparation kits, and 150-bp paired-end reads were gener
ated on the Illumina HiSeq 4000 platform. Therefore, four WGS datasets, 
referred to as 100data, DY, TS and YT, were used in this study.

2.2. Variant calling and quality control

All raw sequence data were filtered by Fastp v0.20.0 (Chen et al., 
2018) and subsequently aligned to the L. maculatus reference genome 
(JAYMHB000000000) using the BWA-MEM algorithm in BWA v0.7.17 
(Li and Durbin, 2010) with default parameters. The resulting Sequence 
Alignment Map (SAM) files were converted into Binary Alignment Map 
(BAM) files, which were then indexed and sorted using SAMtools v1.17 
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(Li et al., 2009). Duplicate reads were identified and excluded by picard 
v1.90 (http://broadinstitute.github.io/picard/). Finally, SNP calling 
and joint genotyping were performed with GATK v4.1.8 (McKenna et al., 

2010), followed by hard filtering with QD ≥ 2.0 || FS ≤ 60.0 || SOR 
> 3.0 || RMS mapping quality ≥ 40.0 || MQRankSum ≥ -12.5 || Read
PosRankSum ≥ -8.0. After variant calling, SNPs with a missing rate 
above 5 %, minor allele frequency (MAF) below 5 %, and non-biallelic 
SNPs were excluded using BCFtools v1.20 to obtain the final SNP 
database.

2.3. Sequences depth, linkage disequilibrium (LD) and population 
structure analysis

First, the sequencing depth of each sample was captured using 
Mosdepth v0.2.5 (Pedersen and Quinlan, 2018) for subsequent 
down-sampling process. The LD coefficient (r2) for each dataset was 
calculated using the PopLDdecay v3.41 package with the parameters of 
“-MaxDist 300 kb” (Zhang et al., 2019). To better understand the pop
ulation structure of all samples, principal component analysis (PCA) was 
performed using Plink v1.9 (Purcell et al., 2007). Additionally, the ge
netic groups of each sample were further investigated using Admixture 
v1.3.0 (Alexander et al., 2009), with the number of clusters (K) ranging 
from 2 to 7. The K value with the smallest CV error was assumed to be 
the optimal population stratification number, and individuals with q 
values of genetic components greater than 50 % were assigned to their 
corresponding population. Finally, genetic relatedness of population 
was generated using GEMMA v0.98.1 (Zhou and Stephens, 2012) and 
visualized with a heatmap using the hist function in R.

2.4. Evaluation of the accuracy of different genotype imputation pipelines

To preliminary access the accuracy of different genotype imputation 
pipelines, we selected the 100data as test dataset for three categories of 
imputation pipelines: (1) STITCH (v1.6.6) imputation for BAM files, 
based solely on SNP site information without a reference panel (Davies 
et al., 2016), (2) GLIMPSE2 (v2.0.0) imputation for BAM files relying on 
a reference panel (Rubinacci et al., 2023), and (3) BEAGLE (v4.1) 
imputation for VCF files using a reference panel (Browning et al., 2018). 
First, all 1007 samples of DY, TS and YT datasets were included to 
construct a reference panel using SHAPEIT5 following default parame
ters (Hofmeister et al., 2023). Then, to investigate the impact of 
sequencing depth on genotype imputation accuracy, we randomly 
down-sampled paired-reads from the BAM files (average coverage is 
15.9 ×) of 100 samples to lcWGS data with depths of 1 × , 3 × and 
5 × using DownsampleSam in Picard tools. STITCH and GLIMPSE2 
accepted down-sampled BAM files as input, while BEAGLE requires VCF 
files. SNP calling and quality control for the down-sampled BAM files 
followed the same procedures described in Section 2.2 “Variant Calling 
and Quality Control”. Additionally, the pilot study evaluated the impact 
of the K value (number of ancestral haplotypes) on imputation accuracy, 
finding that a K value of 25 is optimal for STITCH imputation in this 
study, while GLIMPSE2 and BEAGLE were used with default parameters. 
Considering imputation efficiency and the robustness of imputation 
performance across chromosomes, three chromosomes (chr1, chr8, and 
chr24) of lcWGS data were chosen for the comparison of imputation 
accuracy. Two metrics were introduced to evaluate the imputation ac
curacy, including genotype concordance (GC) and the squared Pearson 
correlation coefficient of genotype dosage (R2) between the imputed 

lcWGS data and corresponding hcWGS data (Browning et al., 2018). The 
calculation formulas for GC are defined as follows:  

where m means number of matches between imputed and observed 
genotype, x means number of mismatches between imputed and observe 
genotype.

The calculation formulas for R2 are defined as follows: 

R2 =

⎛
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where genotypes were coded as 0, 1, or 2, representing the number of 
the minor allele; lgi is the imputed genotype for individual i in lcWGS 
data, and lg denotes mean imputed genotype value across all individuals; 
hgi and hg were the observed true genotypes and mean value of the 
observed genotypes calling by hcWGS data, and n is the number of all 
individuals used for genotype imputation.

2.5. Effect of reference and target data on imputation accuracy

To investigate the impact of reference data on GLIMPSE2 imputa
tion, the YT dataset, characterized by heterogeneous population struc
ture, was selected as test data for genotype imputation using three 
different reference panel construction strategies varying in population 
genetic diversity and sample size. In detail, SHAPEIT5 was used to 
construct following reference panel: (1) The reference panel called 
"DY+TS" was constructed by integrating 613 samples from 100data, DY 
and TS datasets. (2) The reference panel called "YT" was constructed 
from YT samples only. To avoid overestimation of imputation accuracy 
caused by overlap between the imputation samples and the reference 
panel construction samples, we employed a five-fold cross-validation 
approach. In this approach, 80 % of the samples from each population, 
selected based on the optimal YT population stratification, were used to 
construct the reference panel, while the remaining 20 % were desig
nated as the imputation dataset. This approach ensured genetic diversity 
in the reference panel and minimized the risk of accuracy over
estimation. This procedure was repeated five times until all YT samples 
were imputed. (3) The comprehensive "ALL" reference panel, combining 
the previous two strategies, was formulated through 613 samples from 
100data, DY and TS datasets, together with 80 % of the YT samples 
(394). The remaining 20 % of YT samples served as the target data for 
imputation. The five-fold cross-validation procedure was repeated until 
all YT samples were imputed. Additionally, to investigate the impact of 
target data on GLIMPSE2 imputation, imputation accuracy was 
compared across DY, TS, and YT datasets, which vary in population 
structure, genetic relatedness, LD level and sample size, using the 
optimal reference panel. All BAM sequence files of DY, TS and YT 
datasets were randomly down-sampled to varying lcWGS levels of 
0.5 × , 1 × , 2 × , 3 × , and 5 × using Picard. Three chromosomes 
(chr1, chr8, and chr24) of lcWGS data were selected for GLIMPSE2 
imputation and imputation accuracy was assessed by calculating the GC 
and R² between the imputed and true genotypes.

GC =
(mRef/Ref + mRef/Alt + mAlt/Alt)

(xRef/Ref + xRef/Alt + xAlt/Alt + mRef/Ref + mRef/Alt + mAlt/Alt)
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2.6. Comparison of imputation accuracy between GLIMPSE2 and 
STITCH

Given the critical impact of sample size on the accuracy of STITCH 
imputation, which is highly sensitive to imputation samples to estimate 
ancestral haplotype for inferring missing genotypes. For example, 
STITCH imputation accuracy for Pacific oyster exhibited an increasing 
trend with the increase of sample size, and the accuracy tended to sta
bilize after the sample size reached 300 (Davies et al., 2016; Yang et al., 
2024). Therefore, the lower accuracy of STITCH relative to GLIMPSE2 
observed in the 100 test samples aligns with methodological expecta
tions. This result shouldn’t be interpreted as definitive evidence of 
GLIMPSE2’s superiority, and we couldn’t determine GLIMPSE2 as an 
optimal approach rather than STITCH. To address this critical de
pendency and determine the optimal genotype imputation pipeline for 
an adequate sample size, we systematically compared the imputation 
accuracy of GLIMPSE2 and STITCH for DY, TS and YT datasets. BAM 
files were down-sampled to lcWGS levels of 0.5 × , 1 × , 2 × , 3 × , and 
5 × using Picard. For GLIMPSE2 imputation, the optimal reference 
panel was constructed following the third strategy described above. To 
accurately estimate ancestral haplotypes for STITCH imputation without 
a reference panel, all 1007 samples were included in the process. Three 
chromosomes (chr1, chr8, and chr24) from lcWGS data were selected for 
genotype imputation, and the GC and R² values between the imputed 
and true genotypes were compared for both GLIMPSE2 and STITCH.

2.7. Application of imputed lcWGS data in genomic prediction for growth 
traits

Owing to the high heterozygosity and extensive SNP density within 
the Lateolabrax maculatus genome, the utility of imputed SNP markers 
for selective breeding programs, particularly concerning polygenic 
traits, requires further validation. Therefore, we conducted genomic 
prediction (GP) using imputed lcWGS data for TL trait for DY and TS 

datasets, and BW trait for YT datasets. Based on the imputation perfor
mance in the three datasets, imputed 3 × lcWGS data generated by 
GLIMPSE2, combined with an optimal reference panel, were selected for 
subsequent genomic prediction, and the results were compared with 
those obtained using hcWGS data. Genomic predictions were carried out 
using a 10-fold cross-validation approach with five replicates. Specif
ically, 10 % of the samples were randomly selected as the validation set, 
while the remaining 90 % served as the training set for GWAS analysis 
using GEMMA v0.98.1 (Zhou and Stephens, 2012). Different numbers of 
SNPs with the smallest genome-wide p values from GWAS were chosen 
to model the genotype and true phenotype data in the training set, which 
was then used to predict the phenotypes in the validation set. Predictive 
accuracy was calculated as the Pearson correlation coefficient between 
the true and predicted phenotypes. Support Vector Machine (SVM), a 
powerful machine-learning algorithm from the kernel-based family, was 
employed for genomic prediction due to its outstanding predictive 
performance in complex trait analysis (Wang et al., 2022).

3. Results

3.1. SNP identification and statistics

After high-throughput sequencing and filtering, 3.91, 19.05, 13.50 
and 21.94 billion pairs of clean reads were generated for 100data, DY, 
TS and YT datasets, respectively, with average sequencing depths of 
15.93 × , 10.00 × , 10.04 × and 10.48 × (Fig. 1 A). Following variant 
calling and quality control, a total of 5244,698 SNPs were identified as 
common across all datasets, which were subsequently used as imputa
tion markers in this study. These SNPs spanned a total physical distance 
of 622.44 Mb, with an average density of SNP/118 bp, indicating a 
dense and uniform distribution throughout the genome. Among the 24 
chromosomes, chromosome 22 harbored the highest SNP marker den
sity of SNP/105 bp, while chromosome 6 possessed the lowest SNP 
marker density of SNP/137 bp (Fig. S1, Table S1).

Fig. 1. (A) Box plot showing the sequencing depth for the four datasets. (B) LD decay plot of SNPs for the four datasets. (C) PCA plot of all individuals from the four 
datasets based on PC1 and PC2. (D) Bar plot showing the genetic components of the four datasets based on Admixture analysis. The numbers represent the cor
responding populations.
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3.2. LD and population structure analysis

The analysis of linkage disequilibrium (LD) revealed a rapid decline 
in the squared correlation coefficient (r²) between loci as the distance 
between SNP pairs increased. At a distance of 250 bp, the r² values were 
0.0932, 0.0768, 0.0826 and 0.1045 for 100data, DY, TS and YT datasets, 
respectively (Fig. 1B). Among these, YT dataset exhibited a relatively 
higher level of LD. The PCA results suggested that the YT dataset 
comprised complex genetic groups, while individuals from the other 
three datasets were more genetically homogeneous and clustered closely 
with a subset of YT individuals (Fig. 1 C). Admixture analysis identified 
the optimal population stratification number as 5 for all individuals 
(Fig. S2). Based on q values of the genetic components, 1, 1, 2, and 4 
populations were assigned to the 100data, DY, TS, and YT datasets, 
respectively, further highlighting the higher genetic diversity in the YT 
dataset (Fig. 1D). Additionally, analysis of genetic relatedness revealed 
no detectable relatedness within the DY dataset, while weak genetic 
relatedness was observed in the TS dataset. Notably, significantly 
stronger genetic relatedness was identified within the YT dataset 
(Fig. S3).

3.3. Computational efficiency comparison of genotype imputation 
pipelines

To assess computational efficiency of different genotype imputation 
pipelines, we performed chromosome 1 (267,335 SNPs) imputation 
(Table S1) benchmarking at 3 × sequencing depth using Intel H3C 
R4900 G5 clusters with 60-thread parallelization, while constraining 
GATK to its default 4-thread implementation. The actual CPU hours 
consumed for different pipelines revealed significant disparities 
(Table S2). The BEAGLE pipeline consumed 79.0 CPU-hours, comprising 
47.2 CPU-hours for GATK variant calling (11.8 h × 4 threads) and 31.8 
CPU-hours for imputation (0.53 h × 60 threads). STITCH required 252.0 
CPU-hours (4.2 h × 60 threads) despite direct BAM imputation. In 

contrast, GLIMPSE2 achieved optimal efficiency at 10.8 CPU-hours 
(0.18 h × 60 threads) through direct BAM imputation. This represents 
an 86.3 % reduction for GLIMPSE2 versus BEAGLE and a 95.7 % 
reduction versus STITCH, establishing GLIMPSE2 as the most compu
tationally efficient pipeline.

3.4. Accuracy evaluation of different genotype imputation pipelines for 
100data dataset

To preliminary determine the optimal genotype imputation pipeline, 
100data dataset, characterized by a simple population structure 
(Fig. 1 C and D), was selected as test data for three imputation pipelines. 
One sample with a low sequencing depth (8.48 ×) was excluded due to 
deviation from the average (Fig. 1 A), and the imputation accuracy of 
three methods across various sequencing depths was assessed using GC 
and R² metrics (Fig. 2). Our results revealed significant differences 
(P < 0.0001) in accuracy among the three methods at various 
sequencing depths, although imputation accuracy generally improved 
with increasing sequencing depth (Fig. 2). Of which, GLIMPSE2 
demonstrated the highest imputation accuracy, BEAGLE the lowest, and 
STITCH exhibited intermediate imputation accuracy. Notably, as 
sequencing depth increased, the accuracy gap between STITCH and 
GLIMPSE2 gradually narrowed. For example, at a sequencing depth of 
5 × , GC values for STITCH, GLIMPSE2, and BEAGLE were 0.889, 0.919 
and 0.727 (Fig. 2A, Table S3), respectively, and the corresponding R² 
values were 0.923, 0.935 and 0.806 (Fig. 2B, Table S3). Therefore, 
GLIMPSE2 was deemed a superior reference panel-based imputation 
method compared to BEAGLE. However, due to the relatively small 
sample size used for STITCH imputation, its performance warrants 
further evaluation.

3.5. Effect of reference and target data on GLIMPSE2 imputation 
accuracy

To further refine the optimal imputation pipeline, the effect of 
reference data on GLIMPSE2 imputation accuracy was evaluated for YT 
datasets. At a relatively high sequencing depth of 5 × , imputation ac
curacy across the three reference panels was comparable, with GC 
values of 0.935, 0.929 and 0.911, and R2 values of 0.946, 0.942 and 
0.926 for ALL, YT and “DY+TS” reference panels, respectively (Fig. 3, 
Table S4). However, as sequencing depth decreased, particularly at 
0.5 × and 1 × , the imputation accuracy of “DY+TS” reference panel 
dropped significantly compared to the YT and ALL panels. At 0.5 × , the 
GC and R2 values of “DY+TS” reference panel were 0.639 and 0.677, 
respectively (Fig. 3A and B, Table S4). These results indicate that when 
the reference panel lacks individuals of target population, the imputa
tion accuracy is considerably reduced. When a subset of YT individuals 
was selected to construct reference panel (YT), the imputation accuracy 
significantly improved, with GC and R2 values of 0.830 and 0.854, 
respectively, at 0.5 × (Fig. 3A and B, Table S4). Moreover, increasing 
population size within the reference panel (ALL) only slightly enhanced 
the imputation accuracy, with GC and R2 values of 0.862 and 0.884, 
respectively, at 0.5 × (Fig. 3A and B, Table S4). Based on the optimal 
reference panel construction strategy (ALL), the imputation accuracies 
for DY and TS datasets were significantly lower than those of YT datasets 
at lower sequencing depths, especially at 0.5 × , the GC values were 
0.601, 0.771 and 0.862 for DY, TS and YT datasets, respectively, with 
corresponding R2 values of 0.645, 0.805 and 0.884 (Fig. 3C and D, 
Table S5).

3.6. Comparison of imputation accuracy between GLIMPSE2 and 
STITCH for three datasets

To compare the imputation accuracy between GLIMPSE2 and 
STITCH for adequate sample size, we conducted genotype imputation 
for all 1007 samples including three datasets. As shown in Fig. 4, the 

Fig. 2. The comparison of genotype imputation accuracy bewteen different 
imputation methods and sequencing depths for 100data dataset. (A) Estimated 
genotype concordance (GC) between imputed genotypes and true genotypes. 
(B) Estimated squared Pearson correlation coefficient (R²) for genotype dosage 
between imputed and true genotypes.
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imputation accuracy of both GLIMPSE2 and STITCH generally improved 
with increasing sequencing depth. At depths of 2 × , 3 × and 5 × , there 
was no significant difference between two methods in terms of GC and 
R² values for three datasets, except for higher GC values with GLIMPSE2 
in the TS dataset at 2 × depth. However, at lower sequencing depths of 
0.5 × and 1 × , GLIMPSE2 generally exhibited superior imputation ac
curacy compared to STITCH, particularly for TS and YT datasets (Fig. 4, 
Table S6). Notably, for DY dataset, which has a simple population 
structure, imputation accuracy including GC and R2 remained consis
tently lower (< 0.8) at 0.5 × and 1 × depths for both GLIMPSE2 and 
STITCH (Fig. 4, Table S6).

Fig. 3. The effects of reference and target data on GLIMPSE2 imputation accuracy. The effects of different reference panels on imputation accuracy for YT dataset 
based on (A) GC and (B) R². The effects of different target datasets on imputation accuracy using the optimal reference panel construction strategy based on (C) GC 
and (D) R².

Fig. 4. The comparison of (A) GC and (B) R² between GLIMPSE2 and STITCH 
across different sequencing depths for DY, TS and YT datasets. GLIMPSE2 
imputation was performed using the optimal reference panel construction 
strategy, and STITCH imputation included all 1007 samples.

Fig. 5. The comparison of predictive accuracies for growth traits using lcWGS 
(3 ×) and hcWGS (10 ×) data for (A) DY, (B) TS and (C) YT datasets. The SVM 
model was used for genomic prediction.
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3.7. Genomic prediction using lcWGS data after GLIMPSE2 imputation

Given that imputation accuracy at 3 × depth achieved relatively 
high levels (GC > 0.85 and R² > 0.87) across all three datasets (Fig. 4, 
Table S6), we selected the 3 × lcWGS data after GLIMPSE2 imputation, 
along with hcWGS data, to perform genomic prediction and further 
evaluate its application potential. For DY dataset (Fig. 5A), lcWGS and 
hcWGS data alternated in predictive accuracy across marker numbers 
ranging from 50 to 3000. Notably, the predictive accuracy of hcWGS 
data reached plateau (0.221) at 3000 SNPs, whereas at least 10,000 
SNPs were required to achieve predictive accuracy above 0.2 (Table S7). 
For TS dataset (Fig. 5B), both lcWGS and hcWGS data exhibited a similar 
predictive trend. Predictive accuracy increased gradually with the 
number of markers, reaching the predictive plateau (0.389 and 0.376) at 
3000 and 5000 SNPs for hcWGS and lcWGS data, respectively, and 
decreased slightly with further increases in marker number (Table S7). 
For YT dataset (Fig. 5C), despite fluctuations in predictive accuracy, 
both lcWGS and hcWGS data generally followed an upward trend fol
lowed by a decline. The predictive peak was 0.397 for lcWGS data at 500 
SNPs and 0.394 for hcWGS data at 1000 SNPs (Table S7). Overall, as the 
number of SNPs increased, there was no significant discrepancy in 
predictive accuracy between lcWGS and hcWGS data. The required SNP 
number largely depended on imputation accuracy, with 5000, 100, and 
100 SNPs needed for DY, TS and YT datasets, respectively (Fig. 5, 
Table S7).

4. Discussion

The rapid advancement of sequencing and biostatistics technologies 
has facilitated the widespread use of genomic resources to dissect ge
netic mechanisms and enhance genetic gains for economically important 
traits in aquaculture species (Houston et al., 2020; Yáñez et al., 2020). 
However, the high cost of genotyping remains a barrier, limiting the 
number of sequenced individuals and hindering the full utilization of 
genomic resources. The development of low-cost genotyping strategies 
and genotype imputation offers a promising solution to address cost 
challenges and increase the number of genotyped individuals (Zhang 
et al., 2023). Among these, lcWGS stands out for its extensive coverage 
of genetic variation across the genome and cost-effectiveness (Davies 
et al., 2021; Lou et al., 2021) and has been successfully applied in ge
notype imputation research in human (Gilly et al., 2016), cattle (Zhang 
et al., 2023) and large yellow croaker (Zhang et al., 2021). Therefore, 
the development of an appropriate and efficient imputation pipeline 
leveraging lcWGS data is essential for spotted sea bass that demand 
urgent genetic improvement (Zhang et al., 2023).

In this study, we evaluated three widely used imputation software - 
STITCH, GLIMPSE2, and BEAGLE - to determine the optimal imputation 
pipeline. These tools employ diverse imputation strategies, varying 
dependence on reference panels and their use of BAM or VCF files for 
imputation. To minimize computational redundancy and enhance 
imputation efficiency, the 100data dataset, characterized by a small 
sample size, high sequencing depth (15.93 ×), and simple genetic 
structure (Fig. 1 C and D), was selected as the most suitable dataset for 
the preliminary screening of imputation pipelines. Of which, GLIMPSE2 
and BEAGLE, both reliant on same reference panel, demonstrated the 
highest and lowest imputation accuracy across varying sequencing 
depths, respectively (Fig. 2). The relatively poor performance of 
BEAGLE than GLIMPSE2 or STITCH has also been observed in previous 
imputation studies involving both aquaculture and livestock species 
(Teng et al., 2022; Wang et al., 2025; Yang et al., 2024; Yang et al., 
2021), suggesting that BEAGLE imputation is unable to accurately es
timate missing genotypes despite having a high quality reference panel. 
Furthermore, we quantified computational efficiency through genotype 
imputation benchmarking for chr1 at 3 × sequencing depth. Tests were 
conducted on Intel H3C R4900 G5 clusters with 60-thread paralleliza
tion, measuring actual CPU-hour consumption. The BEAGLE pipeline 

necessitates intermediate VCF generation via GATK variant calling, 
which is constrained by a default 4-thread implementation (McKenna 
et al., 2010). This architectural limitation resulted in high resource de
mands totaling 79.0 CPU-hours, -comprising 47.2 CPU-hours for GATK 
(11.8 h × 4 threads) and 31.8 CPU-hoursfor BEAGLE (0.53 h × 60 
threads). In contrast, GLIMPSE2’s direct BAM processing achieved su
perior efficiency at 10.8 CPU-hours (0.18 h × 60 threads), representing 
an 86.3 % reduction relative to BEAGLE. Therefore, this combination of 
computational efficiency and accuracy establishes GLIMPSE2 as the 
optimal imputation approach for spotted sea bass when reference panels 
are available.

The quality of the reference panel critically influences imputation 
accuracy (Charon et al., 2021; Li et al., 2023), with population genetic 
diversity and sample size serving as key determinants in panel con
struction (Fernandes Garcia et al., 2022). To systematically evaluate 
these factors for GLIMPSE2 imputation, we selected the YT dataset, 
characterized by diverse population structures (Fig. 1 C and D), ensuring 
population diversity alignment between reference and target data. 
Notably, for GLIMPSE2 imputation with “DY+TS” reference panel, the 
sample size of target and reference data was 493 and 514, respectively. 
While for imputation using YT panel, we employed a five-fold cross-
validation approach with five imputations, with each imputation 
involving a target sample size of 99 and a reference size of 394, both 
significantly smaller than those of the “DY+TS” panel. Crucially, at 
lower sequencing depths (0.5 ×, 1 × and 2 ×), the YT panel demon
strated significantly higher accuracy than the larger “DY+TS” panel 
(Fig. 3A and B, Table S4), despite the latter having a larger reference 
panel. This superior imputation performance of YT panel is mainly due 
to its diverse population structure congruence with target data. These 
results indicate that optimizing reference panels for population genetic 
diversity rather than sheer sample size maximizes imputation accuracy, 
aligning with previous genotype imputation studies in cattle and tilapia 
(Fernandes Garcia et al., 2022; Zhang et al., 2023). This principle is 
reinforced by diminishing returns in accuracy gains: the ALL panel 
showed only marginal improvements over YT panel (3.9 % for GC and 
3.3 % for R2 at 0.5 ×) (Fig. 3A and 3B, Table S4), confirming that panel 
size is not the primary accuracy determinant when population genetic 
diversity is matched (Yang et al., 2024; Zhao et al., 2021). Nevertheless, 
maximizing the size of reference panels remains crucial to achieve the 
highest possible accuracy, especially when sequenced animals exhibit 
limited genetic diversity. It is also noteworthy that, despite employing 
an identical construction strategy of reference panel (ALL), the impu
tation accuracies for DY and TS datasets remain significantly lower than 
those of YT datasets at lower sequencing depths (Fig. 3C and D, 
Table S5). This superior imputation performance of YT datasets mainly 
stems from a relatively higher level of LD and genetic relatedness, and 
diverse population structure. Furthermore, although the DY dataset had 
a larger sample size than TS dataset, its imputation accuracy was notably 
lower than that due to the lower LD, weaker genetic relatedness, and 
simple population structure (Fig. 1B and D, Fig. S3). These results about 
the impact of reference and target data on imputation accuracy collec
tively emphasize that population structure, genetic relatedness and LD 
level between the haplotype reference data and the lcWGS data to be 
imputed are important factors affecting imputation performance. 
Therefore, when performing genotype imputation using lcWGS data, 
prioritizing these factors in both the reference and target data is essen
tial, and increasing the sample size as much as possible will further 
enhance accuracy.

STITCH, a leading imputation software that operates without a 
reference panel, has effectively addressed the challenge of accurate 
genotype imputation in many non-model species that lack high-quality 
genotype reference panels (Davies et al., 2016). Its outstanding perfor
mance has been demonstrated in humans, mice, pigs, and cattle (Davies 
et al., 2016; Nicod et al., 2016; Teng et al., 2022; Yang et al., 2021). For 
aquatic species, lcWGS data imputed using STITCH achieved predictive 
accuracy comparable to WGS genotype data in both real and simulated 
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datasets in large yellow croaker, highlighting its potential in genomic 
selection (Zhang et al., 2021). Similarly, STITCH combined with lcWGS 
has proven to be a high-throughput and cost-effective genotyping 
method in Pacific oyster (Yang et al., 2024). In our study, we first 
evaluated the impact of founders or ancestral haplotypes (K) on STITCH 
imputation accuracy using the 100data dataset. While the highest 
imputation accuracy was observed at K = 30 (Fig. S4), this required 
longer computation times. Therefore, K = 25 was selected as the optimal 
parameter for further imputation. Although the imputation performance 
of STITCH was slightly lower than that of GLIMPSE2 for 100data data
set, this result aligns with expectations, as STITCH relies solely on 
sequencing reads in BAM format to estimate optimal ancestral haplo
types. Clearly, the 100data dataset was insufficient to generate effective 
haplotype information for accurate imputation. A similar pattern was 
seen in Pacific oyster imputation, where accuracy stabilized after the 
sample size reached 300 at sequencing depths of 1 × and 2 × (Yang 
et al., 2024). To maximize STITCH’s performance, 1007 samples were 
included for imputation process, and the results were compared with 
GLIMPSE2 using ALL panel across three datasets. Despite this, 
GLIMPSE2 consistently outperformed STITCH in three datasets (Fig. 4). 
Consequently, GLIMPSE2 using ALL panel was identified as the optimal 
imputation pipeline for spotted sea bass up to now. Notably, both 
STITCH and GLIMPSE2 exhibited lower imputation accuracy for DY and 
TS datasets compared to YT dataset (Fig. 4), reinforcing the idea that the 
genetic diversity of reference and target data is a crucial factor affecting 
imputation accuracy, regardless of whether a reference panel is used.

Genomic selection has proven to be an effective method for accel
erating breeding progress and reducing the costs associated with 
breeding programs (Georges et al., 2019). The application potential of 
GS based on hcWGS data for growth traits has been demonstrated in our 
previous study (Zhang et al., 2024). To further reduce genotyping cost in 
genomic selection for spotted sea bass, the impact of lcWGS data on 
genomic prediction was investigated in this study. Genomic predictive 
performance of lcWGS data showed a high correlation to their imputa
tion accuracy within three datasets. A significant difference in predictive 
accuracy between hcWGS and lcWGS data was observed only in DY 
dataset, with a relatively lower R2 value (0.873). However, the com
parable predictive accuracy between hcWGS and lcWGS data was 
observed once the number of markers exceeded 5000 (Fig. 5, Table S7). 
Furthermore, DY dataset has previously shown poor predictive perfor
mance in GP using SNP and InDel markers, likely due to its simple ge
netic structure and low genetic relatedness (Zhang et al., 2023; Zhang 
et al., 2024), indicating that it may not be suitable for GS. Our study 
primarily focused on assessing the potential of lcWGS data in GP, 
although investigating factors affecting predictive accuracy warrants 
further exploration. The predictive accuracy between imputed lcWGS 
data and WGS genotype data was remarkably consistent for TS and YT 
datasets when marker numbers exceeded 50, with R2 values of 0.909 
and 0.935, respectively (Fig. 5B and C, Table S6). Although slightly 
lower accuracy was observed for lcWGS compared to hcWGS at 50 
markers for two datasets, both datasets could reach the predictive 
plateau with a similar number of markers (Fig. 5B and C, Table S7). This 
suggests that lcWGS, combined with genotype imputation, can effec
tively capture genetic variation and achieve comparable prediction 
performance to hcWGS data (Song et al., 2024; Zhang et al., 2021; Zhang 
et al., 2022). However, due to the relatively low genetic relatedness 
observed in the three datasets (Fig. S3), there remains considerable 
potential for improving imputation accuracy, particularly at lower 
sequencing depths. Future efforts will focus on expanding both the 
reference and target data with additional family representatives to 
further optimize the genotype imputation pipeline.

5. Conclusion

This study systematically evaluated different genotype imputation 
pipelines, differing in their reliance on reference panels and the use of 

BAM or VCF files. Due to lower accuracy and excessive computational 
demands, BEAGLE was not considered for further analyses. We also 
explored the effects of reference and target data on GLIMPSE2 imputa
tion, finding that population genetic diversity outweighed sample size in 
constructing reference panels. And population structure, genetic relat
edness and LD level between reference and target data are important 
factors affecting imputation accuracy. In addition, we developed the 
first publicly available reference panel, comprising 1107 spotted sea 
bass samples. The imputation accuracy of STITCH and GLIMPSE2 for 
adequate sample size were compared for three datasets, and GLIMPSE2 
imputation using ALL panel emerged as the most effective imputation 
pipeline for spotted sea bass. Finally, we demonstrated that lcWGS data 
combined with GLIMPSE2 imputation provides genomic prediction re
sults comparable to those obtained with hcWGS data. These insights 
contribute to advancing large-scale genotyping efforts for spotted sea 
bass and can serve as a reference for genotype imputation in other 
aquaculture species.
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