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Testicular steroids are critical hormones for the regulation of spermatogenesis in male teleosts and their
productions have been reported to be regulated by gonadotropins and gonadotropin-releasing hormone.
In the Japanese sea bass (Lateolabrax japonicas), the reproductive endocrine, particularly regarding the
production and regulation of testicular steroids, are not well understood. For this reason, we first cloned
and characterized the response of several key genes regulating the production of testicular steroids and,
second, we analyzed the changes of mRNA profiles of these genes during testicular development cycle
and in the administration of hCG and GnRHa with corresponding testosterone level in serum, GSI and his-
tological analyses. We succeeded in cloning the full-length cDNAs for the fushi tarazu factor-1 (FTZ-F1)
homologues (FTZ-F1a and FTZ-F1b), steroidogenic acute regulatory protein (StAR) and anti-Müllerian
hormone (AMH) in Japanese sea bass. Multiple sequence alignment and phylogenetic analysis of these
proteins clearly showed that these genes in Japanese sea bass were homologous to those of other piscine
species. During the testicular development cycle and hCG/GnRHa administration, quantification of jsb-
StAR transcripts revealed a trend similar to their serum testosterone levels, while a reciprocal relationship
was founded between the serum concentrations of testosterone and jsbAMH and the links between
gonadal expression of jsbStAR, jsbAMH and jsbFTZ-F1 were also observed. Our results have identified
for the first time several key genes involved in the regulation of steroid production and spermatogenesis
in the Japanese sea bass testis and these genes are all detected under gonadotropic hormone and
gonadotropin-releasing hormone control.

� 2014 Published by Elsevier Inc.
1. Introduction

As in mammals, teleosts steroids play critical roles throughout
the reproductive cycle and pituitary gonadotropins (follicle stimu-
lating hormone FSH and luteinizing hormone LH) are the primary
mediators of sex steroid synthesis [1]. In males, FSH is required
for the initiation of spermatogenesis, whereas the major role of
LH is to facilitate gamete maturation and spawning [2]. Binding
FSH or LH to their specific cell-surface receptors leads to the pro-
duction of second messenger molecules which stimulate activity
of key steroidogenic enzymes [3]. An important factor regulating
the timing and rate of steroidogenesis in mammals appears to be
the steroidogenic acute regulatory protein (StAR) [4], which may
rapidly be synthesized in response to pituitary trophic hormones
[5]. In teleosts, studies on StAR mainly concentrate on ovarian StAR
gene expression, i.e., shortfinned eels (Anguilla australis) [6], zebra-
fish (Danio rerio) [7], brook trout (Salvelinus fontinalis) and rainbow
trout (Oncorhynchus mykiss) [8] with few information available on
the regulation of testicular StAR [3,9]. Hence the changes of testic-
ular StAR gene expression during spermatogenesis remain to be
determined.

Another factor that has recently been characterized as an
important contributor to the regulation of sex determination and
later gonad development in several teleost species like Japanese
eel (Anguilla japonica) [10], medaka (Oryzias latipes) [11], zebrafish
[12], European sea bass (Dicentrarchus labrax) [13] is the anti-
Müllerian hormone (AMH), also known as Müllerian inhibiting
substance (MIS). It belongs to the transforming growth factor b
(TGF-b) superfamily [14]. It is reported that AMH negatively
modulates the differentiation and function of Leydig cells by
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down-regulating several enzymes involved in the steroidogenic
pathway [15,16]. In addition, a reciprocal relationship between
the serum concentration of testosterone and MIS has been found
in the postnatal male mammal [17–19]. However, the regulatory
mechanisms of AMH in teleosts are not fully understood yet.
Although several other factors (SOX-9, GATA4 and Wilms
tumour-1, WT1) have been identified to be essential to AMH
expression in mammal [20,21], SF-1 (steroidogenic factor 1), a
member of the fushi tarazu factor 1 (FTZ-F1) subfamily of nuclear
receptors, is wildly supposed to be crucial in mammalian steroido-
genesis by regulating AMH expression [20,22].

FTZ-F1 was first found to be an activator of fushi tarazu (FTZ) in
Drosophila [23], afterwards the FTZ-F1 homologs were renamed
NR5A according to the novel nomenclature system [24] which have
been divided in two groups (NR5A1 and NR5A2). Mammalian ste-
roidogenic factor 1 (SF-1) and genes homologous to SF-1 are placed
in the NR5A1 [25], while The NR5A2 group contains genes coding
for proteins linked to regulation of a-fetoprotein [26]. However,
in teleosts, the FTZ-F1 genes display overlaps between the mam-
malian NR5A1 and 2 expression domains [27–29], showing that
the mammalian classification system may not be appropriate to
apply on fish [22,30]. Although the involvements of reproduction
have been established for different salmonids and zebrafish FTZ-
F1 genes (ff1a–d) [22,27,30–32], the function of FTZ-F1 in teleost
has not been fully elucidated. Studies on medaka and tilapia also
demonstrate that FTZ-F1 is a transcriptional regulator for aroma-
tase expression and activity [33,34]. Thus, in teleosts, FTZ-F1 may
play an important role in regulation of steroidogenic enzyme
expression.

Japanese sea bass (Lateolabrax japonicas) is an important marine
fish which is widely distributed and particularly interested for
commercial aquaculture in parts of East Asia countries including
China. In China, because of the sharp decline in population size
of wild mature Japanese sea bass and the short time of cage culti-
vation, considering the asynchronous of female and male gonadal
development, it is always difficult to get enough mature male fish
for artificial breeding when the female fish ovulation, so external
hormones are urgently needed to improve the male gonad devel-
opment. Human chorionic gonadotropin (hCG) and gonadotropin-
releasing hormone (GnRH) analogue-GnRHa have been employed
to accelerate gamete maturation in many fish, i.e., rainbow trout
[35], coho salmon (Oncorhynchus kisutch) [36] and black porgy
(Acanthopagrus schlegeli) [37], therefore these two hormones were
chosen to administrate the testis development in Japanese sea
bass. However, the specific effects of hCG and GnRH stimulation
on testicular function have not been examined to date in this spe-
cie and comprehensive studies on the expression of testicular ste-
roidogenic enzyme genes during spermatogenesis in Japanese sea
bass are still needed to be investigated. Thus, the aims of this study
are to determine the changes of StAR, AMH and FTZ-F1 mRNA
expression in Japanese sea bass testes during spermatogenesis
and administration of hCG and GnRHa together with the changes
in histological and testosterone level in serum.
2. Materials and methods

2.1. Fish treatment and sampling

Seventy-one Japanese sea bass (body weight 671.21 ± 75.25 g
and body length 37.78 ± 1.57 cm) were sampled from a commer-
cial fish farm (Qingdao, China) in November 2011 and acclimatized
in 16 tanks for 3 days. Fish were reared in natural sea water under
controlled conditions (temperature 17.5 ± 0.7 �C; dissolved
oxygen = 7.5 ± 0.45 mg/l; 13 h light: 11 h dark cycle; salinity
29.0 ± 0.8‰). Seawater was 2/3 replaced daily. After the adaption
period, the fish were divided into three groups randomly, two
treatment groups were intraperitoneal injected with GnRHa (des
Gly10-[D-Ala6]) and hCG (Ningbo, China) at 3.5 lg/kg body weight
and 1000 units/kg body weight, respectively [38,39], the control
group was injected with physiological saline solution (PS). Four
male fish for each group were anaesthetized with 0.2% MS-222
(Sigma, St. Louis, MO) at 0, 6, 12, 24, and 48 h. The weights of
the testes were recorded for computing the GSI, GSI = (gonad
weight/[body weight � viscera weight]) � 100 [40]. Then tissues
including testis, liver, stomach, gills, heart, spleen, kidney, head
kidney, intestine, brain, pituitary and muscle were quickly
removed under sterile condition, snap-frozen and stored at
�80 �C until analysis.

For the research of the testicular development cycle, six male
Japanese sea bass were obtained every month during periods of
spawning season (September–December) in 2011, fish were accli-
matized 3 days in laboratory and anesthetized with MS-222. All
tissues were removed rapidly and kept at �80 �C.

2.2. Histological analysis

The testis were fixed in Bouin’s solution for more than 24 h then
dehydrated in a graded series of ethanol, embedded in paraffin and
cut to 5 lm sections by microtome (LEICA-RM2016), followed by
hematoxylin and eosin (H.E.) staining and photographing by light
microscopy (Nikon-E200, Japan). The testis developmental stages
were determined mainly based on other teleosts [40].

2.3. Radioimmunoassay

Serum levels of testosterone in male Japanese sea bass were
measured using Iodine (125I) Radioimmunoassay Kits (Tianjin Nine
Tripods Medical & Bioengineering Co., Ltd., Sino-US joint-venture
enterprise), according to the method described by Shi [40]. The
coefficients of intra-assay and inter-assay variation were 7.4%
and 9.8%, respectively for the assay.

2.4. Total RNA extraction and reverse transcription (RT)

Total RNA was extracted using RNAiso reagent (Takara, Japan)
according to the manufacturer’s protocol. Briefly, tissues were
homogenized in RNAiso, precipitated isopropanol and washed in
75% ethanol. After DNase treatment, the concentration of total
RNA were quantified by the Nucleic acid analyzer, Biodropsis BD-
1000 (OSTC, China) and a 1.5% agarose gel was applied to detect
the integrity. The reverse-transcription of 2 ll total RNA was car-
ried out using M-MLV Reverse Transcription Kit (Promega, USA)
and the resulting first strand cDNAs were used as templates.

2.5. Cloning of StAR, AMH and FTZ-F1 from Japanese seabass testis

To obtain the core fragment of steroidogenic acute regulatory
protein (StAR), anti-müllerian hormone (AMH) and fushi tarazu fac-
tor-1 (FTZ-F1) of the Japanese sea bass, three pairs of degenerate
primers were designed (Supplementary Table 1) on the CODEHOP
(http://bioinformatics.weizmann.ac.il/blocks/codehop.html), according
to previously reported homologous gene sequences in teleosts. The
PCR was performed in a final volume of 25 ll containing 2.5 ll of
10� reaction buffer, 2 ll of 10 mM dNTP mix, 0.5 ll of 25 lM solution
of each primer, 2.5 U of rTaq polymerase (Takara, Japan) and 18.25 ll
sterile water. The PCR reaction was carried out with 5 min at 94 �C, 40
cycles of 30 s at 94 �C, 30 s at the annealing temperature, and 50 s at
72 �C and followed by an additional 10 min at 72 �C to extend. PCR
product was electrophoresed, purified then cloned into pGEM-T vector
(Tiangen, China) followed by propagation in Escherichia coli DH5a and
sequenced to get the nucleotide information. The result of blasting in
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NCBI revealed that the cloned fragments shared high homology with
genes from other teleosts. In order to obtain their full-length
sequences, the RACE (Rapid Amplification of cDNA Ends) method
was carried out according to the manufacturer’s protocol, with four
specific primers (Supplementary Table 1) for each gene were designed
based on the nucleotide sequence obtained above.
2.6. Homology analysis

Multi-sequences with deduced amino acid sequences of StAR,
AMH and FTZ-F1 were gained from NCBI and aligned using CLUSTAL
W [41]. MEGA 5.0 software package was applied to construct and
analyzed phylogenetic tree using the UPGMA method with 1000
bootstrap trials.
2.7. Tissue-specific expression of jsbStAR, jsbAMH and jsbFTZ-F1 genes

A semi-quantitative PCR was set up and applied to measure
transcript abundances of these three genes in different tissues from
male Japanese sea bass at stage V. Total RNA (2 lg) of tissues
including testis, liver, stomach, pituitary, gills, heart, spleen, kid-
ney, head kidney, intestine, brain, and muscle were isolated as
described above. The 18S rRNA (internal control gene) primers
and gene-specific primers were listed in Table 1, as well as the
reaction temperatures and length of productions. After separating
on 1.5% agarose gels, the PCR products were electrophoresed and
analyzed by the software: Chemiluminescent and Fluorescent
Imaging System (SAGECREATION, China).
2.8. Real-time quantitative RT-PCR assay

Real-time quantitative PCR (q-PCR) was performed with the
SYBR Premix Ex Taq (TAKARA, Japan) on Roche 480 light cycler sys-
tem to measure the changes of jsbStAR, jsbAMH and jsbFTZ-F1 gene
expression during testicular development cycle and hormone
administration. Three pairs of specific primers and internal control
gene (18S) primers were list in Table 1, The SYBR green assay for
every gene was optimized for primer concentration and annealing
temperature to obtain apposite standard curve and a single
sequence-specific peak in the dissociation curve. Q-PCR amplifica-
tion was carried out in duplicate along with a no-template control
in a total volume of 25 ll: containing 12.5 ll of SYBR Premix, 2 ll
of the 1:10 diluted cDNA, 0.5 ll each of forward and reverse primer
and 9.5 ll PCR grade water. The thermal cycling parameters were
an initial 1 cycle activation at 95 �C for 2 min, followed by 40 cycles
of 95 �C for 15 s, Tm of each gene for 15 s, 72 �C for 15 s, and a
dissociation curve was produced StARting from 55 �C (+1 �C/30 s)
to 95 �C. After the PCR program, 2�DDCT method was used to
analysis the expression levels. Samples from the hCG and
GnRH-injected groups were expressed relatively to that of the
PS-injected group (experimental controls) as fold change and the
samples in testicular development cycle were relative to that of
stage II.
Table 1
Primer sequences used in gene expression analyses (q-PCR and RT-PCR) of StAR, AMH and

Gene Forward primer Reverse primer

StAR AATGGGGGAGTGGAACCCTAA AGCGGACGCTGACAAAG
AMH CCGTGCGTATGAGGTGC GTTGGCGGTGTTTGGAC
FTZ-F1* TGCCTCAAGTTCCTGGTCCT CGTTTGCTGCGGGTAGT
18S GCGGTCGGCGTCCAACTTCT CGAGTGGGGTTCAGCGG

* The primers used to analysis tissue distribution and changes of FTZ-F1 mRNA profile du
conservative region, region III, of the jsbFTZ-F1a and b, so the whole FTZ-F1 was detecte
2.9. Statistics analysis

Statistical analyses were performed using SPSS13.0 (SPSS, Chi-
cago, IL). Statistical differences of genes expression changes during
testicular reproduction cycle and hormone-treatments were ana-
lyzed by Duncan’s multiple range tests and differences were con-
sidered to be significant at P < 0.05.
3. Results

3.1. Gonadal development

The histological and morphological photomicrographs of Japa-
nese sea bass testes applied in hormone injection experiment were
showed in Fig. 1. Typical early period of stage V testes were
detected in fish without any treatment. Obviously, seminiferous
tubules were filled with some mature spermatozoa, and sperma-
tids can be distinguished evidently (Fig. 1A and B). After injecting
the external hCG for 48 h, large quantities of mature spermatozoa
were detected in the testis and the development level had been
improved significantly (Fig. 1D and E). The changes of GSIs during
reproduction cycle were displayed in Fig. 2A, GSIs were low during
stages II–IV, and increased significantly during late-spermatogene-
sis and spermiation, stage V (6.8-fold compared to stage IV,
P < 0.05). Changes in GSIs of Japanese sea bass testes in hCG/GnRHa
administration were shown in Fig. 2B. The average GSI was
2.27 ± 0.15 before injecting external hormones, while it increased
markedly to 1.39-fold after injecting hCG for 48 h (P < 0.05).

3.2. Changes of serum testosterone levels during testicular
development cycle and hCG/GnRHa administration

Changes in serum testosterone levels corresponding with testis
developmental stage are showed in Fig. 3A. It remained low in both
immature and early-spermatogenesis males, ranging from
34.04 ± 3.70 ng/dl at stageII to 47.91 ± 5.43 ng/dl at stage IV. How-
ever, it significantly increased to 112.74 ± 9.28 ng/dl at stage V
(P < 0.05).

Levels of serum testosterone were increased in response to the
in vivo administration of hCG and GnRHa (Fig. 3B). Levels of testos-
terone in the GnRHa-injected group were approximately 2.5-fold
higher than those in the PS-injected group at 24 h
(98.90 ± 12.59 ng/dl and 28.55 ± 2.42 ng/dl, respectively, P < 0.05).
The increase of T levels in the hCG-treated groups was stronger
than that in GnRHa group. It showed approximately 5.4-fold,
12.3-fold and 11.2-fold increase over the controls at 12, 24 and
48 h (12 h: 199.14 ± 32.48 ng/dl, 24 h: 343.74 ± 24.25 ng/dl and
48 h: 305.24 ± 29.11 ng/dl, P < 0.05).

3.3. Isolation and characterization of FTZ-F1a, FTZ-F1b, StAR and AMH
cDNAs from the Japanese sea bass testis

By using the degenerate primers, two clones were identified
with sequences similarity to teleost FTZ-F1. Further sequence char-
FTZ-F1 from Japanese sea bass.

Product size (bp) PCR efficiency (%) Tm

TC 137 93 62
136 93 61

TAC 112 90 62
GTT 174 108 59

ring testicular development cycle and hCG/GnRHa administration were designed in
d in this study.



Fig. 1. Histological and morphological photomicrographs of Japanese sea bass testes applied in the hormone administrations. (A and B) The testis in early period of stage V, A:
bar = 100 lm, B: bar = 50 lm. (C) The morphology of A and B, the testis before injecting hormone, GSI = 2.65%. (D and E) The testis in last period of stage V, D: bar = 100 lm, E:
bar = 50 lm. (F) The morphology of D and E, the testis after injecting hCG for 48 h, GSI = 6.79%. St, spermatid; Sz, spermatozoa.
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acterization yielded the full-length cDNA sequence of jsbFTZ-F1a
and jsbFTZ-F1b. The jsbFTZ-F1a cDNA resulted in a 1575 bp
sequence that contained a 18 bp 50UTR, a 1557 bp ORF, encoding
a predicted protein of 518 amino acids, and the 1499 bp jsbFTZ-
F1b contained 89 bp 50UTR, a 1410 bp ORF, encoding a predicted
protein of 534 amino acids. The conservative regions of FTZ-F1a
and FTZ-F1b, Regions I, II, III [42] and the FTZ-F1 box [43], were
indicated in Fig. 4A. What’s more, comparison of the deduced
amino acid sequences with other available sequences evidenced
that jsbFTZ-F1a possessed high homology with European sea bass
NR5A2 (97%), mangrove rivulus (Kryptolebias marmoratus) FTZ-F1
(96%), black porgy FTZ-F1a (96%) and jsbFTZ-F1b possessed high
homology with European sea bass NR5A1b (71%), jsbFTZ-F1a
(68%) and zebrafish ff1a (68%), respectively (Fig. 4B). Phylogenetic
analyses of vertebrate FTZ-F1 proteins clearly showed that there
were mainly two separate FTZ-F1 homologues in Fig 4C. The
jsbFTZ-F1a was placed in NR5A2 clade, closest related to zebrafish,
rainbow trout and mangrove rivulus FTZ-F1 sequences and the
jsbFTZ-F1b aligned within NR5A4 clade together with orange-
spotted grouper (Epinephelus akaara) and European sea bass
FTZ-F1 homologous.

In the case of jsbStAR and jsbAMH, the 1234 bp jsbStAR cDNA
contained a 157 bp 50UTR, an 858 bp open reading frame (ORF)
and a 219 bp 30UTR, encoding a predicted protein of 286 amino
acids, and the 2219 bp jsbAMH cDNA contained a 70 bp 50UTR, a
1602 bp ORF and a 547 bp 30UTR, encoding a predicted protein of
534 amino acids. The conserved region in jsbStAR: N-terminal
mitochondrial targeted residues, conserved phosphorylation
motifs for protein kinase A [9,44] and putative amino acid residues
directly contributing to the hydrophobic tunnel structure [45]
were showed in Supplementary Fig. 1A. In addition, the conserved
region in jsbAMH: the AMH domain and the TGF-beta domain at the
C-terminus were also labeled in Supplementary Fig. 2A. Compari-
son of the deduced amino acid sequences of these two genes with
other available sequences in NCBI evidenced a high degree of con-
servation among teleosts (Supplementary Figs. 1B and 2B).
Phylogenetic analyses of vertebrate StAR and AMH proteins
(Supplementary Figs. 1C and 2C) clearly showed that the Japanese
sea bass sequences grouped with those of other teleosts, support-
ing the notion that they are homologous to those of other piscine
species.

The resulting full-length sequences were submitted in GenBank
with accession numbers KC534882 for jsbFTZ-F1a, KC990909 for
jsbFTZ-F1b, JQ995529.1 for jsbStAR and JQ290346.1 for jsbAMH.

3.4. mRNA expression of jsbStAR, jsbAMH and jsbFTZ-F1 gene in
various tissues of male Japanese sea bass

Tissue distributions of jsbStAR, jsbAMH and jsbFTZ-F1 mRNA
were examined using semi-quantitative RT-PCR method (Fig. 5).
The jsbAMH and jsbFTZ-F1 were expressed in all tissues tested,
while jsbStAR showed a more restricted pattern of expression.



Fig. 2. The changes of GSIs in testicular development cycle (A, N = 4 for stage II, N = 4 for stage III, N = 5 for stage IV and N = 11 for stage V) and hormone administrations (B,
N = 4) in male Japanese sea bass. Values of GSIs are expressed as mean ± standard error. Different letters indicate significant difference (P < 0.05, one-way ANOVA, followed by
Duncan’s multiple tests).
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Briefly, jsbAMH transcripts present highly in brain, testis, head
kidney and liver and jsbFTZ-F1 transcripts highly expressed in
brain, pituitary, testis, liver and muscle. However, strong jsbStAR
signals were obtained in head kidney and testis, and weaker
signals were found in pituitary and brain. In addition, the levels
of 18S rRNA were used as internal control and were found in all
tissues studied at a similar intensity.
3.5. The changes of jsbStAR, jsbAMH and jsbFTZ-F1 mRNA profiles
during testicular development cycle

Transcript levels of jsbStAR, jsbAMH and jsbFTZ-F1 showed large
changes during the course of testicular development (Fig. 6).
jsbStAR mRNA levels were strongly increased during stages III–V,
peaking at stage V with levels of 4.5-fold higher than those of stage
II (P < 0.01). The transcript levels of jsbFTZ-F1 demonstrated a sim-
ilar trend with jsbStAR, except that jsbFTZ-F1 peaked at stage IV
with 3.5-fold higher than stage II (P < 0.05). On the contrary, a
progressive decline in jsbAMH mRNA levels was observed during
spermiogenesis, particularly at stage V, when they descended to
0.7-fold of the levels of stage II (P < 0.01).
3.6. Regulation of the expressions of jsbStAR, jsbAMH and jsbFTZ-F1 in
testis by hCG and GnRHa administration

Changes in the relative abundances of jsbStAR, jsbAMH and
jsbFTZ-F1 in response to hCG and GnRHa were assessed using
quantitative real-time PCR analysis (Fig. 7). It showed that levels
of jsbStAR in hCG and GnRHa treatments at 12 and 24 h were
between 2- and 2.5-fold over the PS-injected controls, Interest-
ingly, jsbStAR was strongly stimulated in response to these two
hormones at 48 h, showing approximately 5.3-fold and 4.2-fold
increase over controls, respectively (Fig. 7A). In the case of jsbAMH,
significant decreases were detected in the hCG group at 24 h and
GnRHa group at 48 h, what’s more, jsbAMH relative transcript level
was extremely low when compared to the control and GnRHa-
treatment group at 48 h (0.17-fold and 0.32-fold, respectively,
P < 0.01) (Fig. 7B). The jsbFTZ-F1 mRNA level progressively, but
not statistically increased in hCG-treatment group at 12 h
(Fig. 7C). However, the significance can be detected in GnRHa-
treatment group at the same time (P < 0.05). In addition, the genes
(jsbStAR, jsbAMH and jsbFTZ-F1) transcript levels remained rela-
tively constant during the whole administration in PS-treatment
groups.



Fig. 3. The changes of testosterone levels during testicular development cycle and hormone administrations in male Japanese sea bass. (A) Changes of testosterone levels
during testicular development cycle. N = 4 for stage II, N = 4 for stage III, N = 5 for stage IV and N = 11 for stage V. (B) Effects of hCG and GnRHa administration on serum
testosterone levels. All values are means ± SEM (N = 4) and values with dissimilar letters indicate significant differences between each group on same time after PS/hormones
injection (P < 0.05, Duncan’s multiple tests).
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4. Discussion

In the present study, we reported the molecular cloning and
expression patterns of StAR, AMH and FTZ-F1 from Japanese sea
bass testes during testicular development. Furthermore, we stud-
ied the hCG and GnRHa-induced changes of jsbStAR, jsbAMH and
jsbFTZ-F1 genes expression in late-spermatogenesis testes and
searched for relationships between their expression profiles, GSI
and serum profile of testosterone.

Moving cholesterol from the outer to inner mitochondrial mem-
brane is the critical rate limiting point in the steroidogenic path-
way and is regulated by the steroidogenic acute regulatory
protein (StAR) [4,6]. It can augment the synthesis of steroid product
5- to 10-fold [46]. Although it is well established that StAR gene
expression is a ubiquitous characteristic of gonadal and adrenocor-
tical tissue [8,47,48], weak signals can also be detected in brain and
pituitary tissues in Japanese sea bass (Fig. 5), StAR mRNA has been
detected in nervous tissue of other fish species, i.e., zebrafish head
[47] and brains of the Japanese eel [49] and freshwater stingrays
(Potamotrygon motoro) [50]. Further studies will be required to ver-
ify whether the StAR in Japanese sea bass brain has the capacity to
produce neurosteroids de novo like other fish [51] and whether the
jsbStAR transcript in brain changes during testicular development
cycle and hCG/GnRHa administration. In Japanese sea bass, the
quantification of StAR transcripts during testicular development
cycle (Fig. 6) revealed a trend similar to their GSIs (Fig. 2A) and
serum testosterone levels (Fig. 3A), remaining relatively constant
during early spermatogenesis then markedly increased as sperma-
tids transformed into spermatozoa. These results were in line with
those reported in European sea bass [52]. In addition, the
significant increase of jsbStAR expression at 12–48 h in hCG and
GnRHa-treatment groups (Fig. 7A) also illustrated similar trends
with their GSIs (Fig. 2B) and their testosterone levels (Fig. 3B).
Our results suggest that jsbStAR may contribute to the hCG/
GnRH-stimulated androgen production in the Japanese sea bass
testis.

In vertebrates, a multitude of studies have shown that anti-
Müllerian hormone exerted inhibitory effects on male and female
gonadal steroidogenesis and differentiation [20], and the presence
of AMH in testis, concretely in the Sertoli cells has also been well-
described in mammals [53,54], birds [55] and reptiles [56,57]. The
first piscine AMH was found in eel, termed ‘eel spermatogenesis
related substances 21’ (eSRS21), which was down-regulated by
hCG and mainly expressed in Sertoli cells of immature testes
[10]. In the present study, jsbAMH mRNA was also highly expressed
in testis (Fig. 5) and during the testicular development cycle, high



Fig. 4. Comparative analysis of Japanese sea bass FTZ-F1a and FTZ-F1b genes. (A) Full amino acid sequences of sbNR5A2 (GenBank Accession No. AGA54131), sbNR5A1
(AGA54133), bpFF1a (AAS75791), bpFF1b (AAS75792), rtFTZ-F1-r (NP_001117708) and rtFTZ-F1 (NP_001118009) are aligned with CLUSTAL W software. Identical amino
acids are indicated by asterisks (*), conservative substitutions are shown by colons (:) and semiconservative substitutions are indicated by commas (.). Regions I, II, III (solid
line) and the FTZ-F1 box (dotted line) are indicated in boxes. (B) Percent homology of the deduced amino acid sequences of the cloned Japanese sea bass FTZ-F1a and FTZ-F1b
with those from other species. The Genbank accession numbers are showed in (C). (C) Phylogenetic analyses are conducted in MEGA5.0. Protein sequences used for
comparison and their Genbank accession numbers are listed at the right of the branches. Complete names of vertebrate used in Fig. 4 are displayed as follows: sb: European
sea bass (Dicentrarchus labrax); mr: mangrove rivulus (Kryptolebias marmoratus); bp: black porgy (Acanthopagrus schlegelii); rt: rainbow trout (Oncorhynchus mykiss); ps:
patagonian silverside (Odontesthes hatcheri); zb: zebrafish (Danio rerio); ti: tilapia (Oreochromis niloticus); md: medaka (Oryzias latipes); osg: orange-spotted grouper
(Epinephelus coioides); winkled frog: Glandirana rugosa; rock pigeon: Columba livia; pig: Sus scrofa; human: Homo sapiens.
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level of jsbAMH mRNA expressed in immature testes until
spermatogonia started to proliferate intensively and decreased in
maturing testes (Fig. 6). The similar expression pattern has also
been found in zebrafish, Japanese flounder and European sea bass
[12,13,22,58]. This is the first time that a down-regulation of
AMH gene expression was observed in maturing male Japanese
sea bass. In addition, the jsbAMH mRNA expressions displayed a
striking different profile when comparing to serum concentrations
of testosterone and the reciprocal relationship between them can
be detected both in testicular development cycle and hCG/GnRHa
administration (Figs. 6 and 7B). This relationship has also been
found in some male species [19]. It has been confirmed that testos-
terone is produced in the Leydig cells of the testis upon stimulation
by LH, activating adenylyl cyclase and the subsequent cAMP-stim-
ulated signal transduction pathway [59]. Otherwise, AMH inhibited
the expression of steroidogenic enzyme, i.e., aromatase [12,60,61],
P450 C17a-hydroxylase/C17–20 lyase [62] and negatively modu-
lated the differentiation and function of Leydig cells [63]. These
results suggest that jsbAMH may involve in inhibiting testosterone
production in Japanese sea bass Leydig cell during testicular
development cycle and hCG/GnRHa administration. A range of
transcription elements in AMH promoter sequence, i.e., GATA
[64], SOX9 [20,65], SF-1 [33,13] and WT-1 [66,67] have been
proven their functionality in AMH by in vitro and in vivo studies,
while the SF-1 is considered to be the key regulator of AMH
transcription [13,68]. Our further efforts are to definitely under-
stand the molecular mechanisms regulating AMH expression and
its signaling in piscine Leydig cell.

In several teleost, such as rainbow trout, black porgy, European
sea bass and zebrafish, two or more separate FTZ-F1 homologues
have been cloned [22,27,30,32,69,70], of which one group can be
placed in NR5A2 clade, but the other group is mainly aligned



Fig. 5. Tissue expression patterns of the jsbStAR, jsbAMH and jsbFTZ-F1 in adult male Japanese sea bass. jsbStAR, jsbAMH and jsbFTZ-F1 genes expression profiles were analyzed
by RT-PCR using specific primers and 18S ribosomal RNA was used as internal control for relative quantity. DNA molecular weight marker (Ma), control (Co, using water as
template), heart (H), liver (L), spleen (S), stomach (ST), kidney (K), brain (B),intestine (I), pituitary (P), muscle (M), head kidney (HK), gill (G) and testis (T).

Fig. 6. mRNA expressions of jsbStAR, jsbAMH and jsbFTZ-F1 in Japanese sea bass during testicular development cycle. 18S ribosomal RNA was used as internal control gene.
Data are expressed relative to stage II. Values are expressed as mean ± standard error of mean. Values with different letters indicate statistical significance by one-way
ANOVA, Duncan’s multiple tests.
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within FTZ-F1-related proteins (NR5A4) which only has been
shown in teleosts so far. It was different from the mammalian
classify criteria, NR5A1 and NR5A2. This suggests that different
classify criteria for teleosts is necessary [22]. In Japanese sea bass,
we also found two FTZ-F1 homologues which belong to different
clades (NR5A2 and NR5A4) (Fig. 4C). What’s more, although the
tAd4BP/SF-1 of tilapia, FTZ-F1 homologue of arctic char (Salvelinus
alpinus), ff1a of zebrafish and mdFTZ-F1 of medaka belong to
different clads, they were all detected to regulate the transcription
of enzymes involved in steroidogenic pathways [30,33,34], accord-
ing to these results, we analyzed the whole FTZ-F1 by designing the
primers in the FTZ-F1 conservative region in present study. The



Fig. 7. Regulation of the jsbStAR, jsbAMH and jsbFTZ-F1 expressions in Japanese sea bass testis by hCG and GnRHa treatment in vivo. The expressions of these genes were
analyzed by qPCR. Data are expressed relative to control, PS-injected fish (mean ± SE). Different letters are indicated significant differences between each group on same time
after PS/hormones injection (P < 0.05, one-way ANOVA, followed by Duncan’s test).
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jsbFTZ-F1 was expressed in a broad variety of tissues and
transcripts were particularly high in brain, testis, liver and
pituitary (Fig. 5). Similar to jsbFTZ-F1, other FTZ-F1 genes of teleosts
also expressed in tissues which involved in functions related to
both steroidogenesis and cholesterol transfer and metabolism
[27,29,30]. Furthermore, the current study showed that the highest
jsbFTZ-F1 mRNA profile was detected at stage IV (Fig. 6), while the
highest testosterone level was found at stage V (Fig. 3A). In
additon, the expression level of jsbFTZ-F1 mRNA significantly
increased at 12 h after treating with GnRHa (Fig. 7C), after 24 h,
the serum testosterone was also found to increase (Fig. 3B). This
activation has also been described in black porgy [37] in which
the mRNA levels of SF-1 in gonad were high at 6 h post GnRHa
injection then plasma testosterone significant increased after
24 h. These results suggest that the FTZ-F1 may involve in testos-
terone synthesis in Japanese sea bass by activating reproductive
axis.

The orphan nuclear receptors, particularly SF-1, are known to
regulate gene expression related to gonadotropins and steroido-
genesis in mammal [71–74]. In zebrafish, FTZ-F1 homologue
(ff1b) has been designated a functional homolog of mammalian
SF-1 [75]. In this study, the elevated jsbFTZ-F1 mRNA levels
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preceded increasing jsbStAR and decreasing jsbAMH transcriptions
during testicular development cycle and hCG/GnRHa administra-
tion (Figs. 6 and 7). For StAR, many studies have identified the
potential SF-1 site in its 50-flanking region [76]. Ff1b mRNA levels
in zeabrafish were correlated with StAR mRNA levels during the
initiation of spermatogenesis [75] and the link between gonadal
expression of acFF1 and StAR was also observed in the reproductive
process of Arctic char [30]. These results suggest FTZ-F1 may
involve in the transactivation of the StAR [76]. With regard to
AMH, FTZ-F1 was wildly supposed to be crucial in mammalian ste-
roidogenesis by regulating AMH expression [20,21]. The temporal
correlation between SF-1 and MIS gene expression [77] and the
potential SF-l-responsive element in its 50-flanking region showed
the probably important role of FTZ-F1 for the initiation of AMH
transcription [68,77,78]. Furthermore, the coexpression of jsbStAR,
jsbAMH and jsbFTZ-F1 observing in head kidney, testis, pituitary
and brain (Fig. 5) also suggest the potential role of FTZ-F1 in steroid
production pathways by regulating the expression of StAR and
AMH in Japanese sea bass. In addition, in many teleosts, CYP19a
gene was verified to be regulated by FTZ-F1, as potential FTZ-F1-
binding sites were observed in its 50-flanking regions [34,79–81].
A strong correlation between P450scc and Ff1b in zebrafish sug-
gested that the transcription of P450scc may also require FTZ-F1
[27]. Thus, FTZ-F1 may play an important role in Japanese sea bass
by regulation of steroidogenic enzyme expression.

In summary, this study described for the first time the repro-
ductive physiology of Japanese sea bass in molecular level. It pro-
vided an overall picture of changes in steroidogenic relational
genes (StAR, AMH and FTZ-F1) expressions during testicular devel-
opment cycle and hCG/GnRHa treatment. The patterns of testoster-
one secretion appeared to be largely regulated by changes in
expression of jsbStAR, jsbAMH and jsbFTZ-F1. In addition, our results
highlighted the importance of hCG and GnRH, especially the hCG,
in regulating the progression of spermatogenesis in the Japanese
sea bass. Further in vitro and in vivo studies will be needed to
understand how gonadotropins, sex steroids and other gonadal
factors (P450C17 or 3b-HSD) interact to regulate Japanese sea bass
reproduction.
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